Buttershaw Business and Enterprise College

Chemistry Paper 1 Key Recall Facts

Atomic Structure and the Periodic Table, Bonding, Structure and Properties of Matter, Quantitative Chemistry, Chemical Changes and Energy Changes

"If I have seen further it is by standing on the shoulders of Giants," Sir Isaac Newton*, 1675.

Name	
Group	
Teacher	

^{*}Sir Isaac Newton developed the Universal Law of Gravitation, that states that gravity affects everything in the Universe, and the three Laws of Motion.

Atomic Structure and the Periodic Table

1. Name the 3 subatomic Protons found in the nucleus (centre of atom) particles in the atom and • Neutrons found in the nucleus (centre of atom) state their location • Electrons found on shells/energy levels around the nucleus 2. What is the relative charge, Particle relative mass and symbol for: Relative Relative Symbol Proton charge mass Neutron +1 1 proton p Electron 0 1 neutron 1/1836 electron e-(5.45 x 10-4) 3. What are the rules for 1. Find out the number of electrons from periodic table (number of electrons is the same as the drawing electronic configuration? proton, or atomic number) 2. Max of 2 electrons in first shell 3. Max of 8 electrons in all other shells Eg, Sodium: 0.1nm (10⁻¹⁰m) 4. What is the radius of an atom? (10^{-14}m) 5. Size of the nucleus of an atom? Equal number of positive protons and negative 6. Why do atoms have no overall charge? electrons. 7. How does an atom form an The atom has gained or lost electrons to form a full, ion? stable outer shell. If the atom loses electrons, it will become a positive ion and if it gains electrons, it will become a negative ion.

8. What is an element?	An element only contains one type of atom.
9. What is a compound?	A compound contains 2 or more elements chemically combined together.
10.What is a mixture?	2 or more substances (elements or compounds) not chemically combined together.
11.How do we separate mixtures?	 Filtration (separates an insoluble solid from a mixture with a liquid) Evaporation/crystallisation (soluble solid from a solution) Distillation (2 solvents) chromatography (coloured compounds/dyes).
of the discoveries made for the history of the atom. What did they discover?	 Dalton 1803 – Theory that all substances made of atoms and atoms are indivisible (spherical model) JJ Thompson 1897 – Plum pudding model after discovering the electron. Rutherford 1907 – Alpha scattering experiment that disproved the plum pudding model. Neils Bohr 1913 – Idea of electrons in energy levels around nucleus. Bohr model. Chadwick 1932 – Discovered the neutron
13.How did the alpha scattering experiment disprove the plum pudding model?	 Most of the alpha particles went straight through – this meant that most of the atom was empty space. Some alpha particles deflected by a big angle – this meant large mass/positive charge concentrated in the nucleus. Only a very few alpha particles deflected by a big angle – this meant nucleus is very small.
14.Compare the plum pudding and the Bohr model	In the plum pudding model, the protons are not subatomic particles but in a ball of positive charge. WHEREAS Nuclear model the protons are in the nucleus. Plum pudding electrons are embedded in the ball of positive charge. WHEREAS Nuclear model the electrons are in shells or energy levels.
15.What is mass number?	Number of protons + number of neutrons

16.What is atomic number?	Number of protons
17. How would you work out the number of protons or electrons of an atom?	Look at the atomic number (this is similar for all atoms of a particular element)
18. How would you work out the number of neutrons of an atom?	Mass number – atomic number
19.What is an isotope?	An isotope is an atom of the same element with the same number of protons but different number of neutrons.
20.What is the relative atomic mass of an element?	The relative atomic mass of an element is an average value that takes account of the abundance of the isotopes of the element.
21.What is a group on the periodic table?	Column containing elements with the same number of electrons in the outer shell and similar properties. The group number tells you the number of electrons in the outer shell.
22.What is a period on the periodic table?	A row with the period number being the number of electron shells.
23.Why is it called a periodic table?	Similar properties occur at regular (periodic) intervals.
24. How are the elements in the modern periodic table arranged?	By atomic number.
25. How were the elements in the Early Periodic tables arranged?	By atomic weight (protons were not discovered at the time)
26.Why was Newlands' Periodic table not accepted?	He ended up putting elements in groups that did not have similar properties e.g., iron oxygen and sulfur.
27.Describe 3 things that Mendeleev did to allow his periodic table to be accepted	 He left gaps for undiscovered elements. He predicted properties of these elements and when they were discovered, his predictions were correct. He switched some elements around (I and Te) to make sure they were in groups with elements that had similar properties.
28. Give the reason why the order of atomic weight was not always correct	Existence of isotopes.

	T
29. Where are metals and non- metals located on the periodic table?	Metals are found on the left-hand side and the centre. Non-metals found on the right-hand side.
30. Why do metals form positive ions and non-metals negative ions?	Metals have less than 4 electrons in the outer shell, so less energy needed to lose electrons, so form positive ions. Non-metals have more than 4 electrons in the outer shell, so less energy to gain electrons, so form negative ions.
31. Give properties of metals	 High melting point Good conductors of heat and electricity Malleable Generally, have high density. Sonorous (make ringing sound when hit) Ductile (can be stretched into wires)
32.Give properties of non- metals	 Generally low melting points Poor conductors of heat and electricity Brittle Generally, have low density
33. What is the other name for group 0 elements?	Noble gases
34. Why are group 0 elements unreactive?	They have a full outer shell, so do not need to gain, or lose electrons.
35. Why does the boiling point increase as you go down Group 0 or group 7?	 Down the group, atom gets bigger. Stronger intermolecular forces. More energy needed to break forces.
36. What is the other name for group 1 elements?	Alkali metals
37. Why are they called alkali metals?	React with water to form a metal hydroxide, which is an alkaline solution.
38.Describe the properties of Group 1 Alkali metals.	 Reactive Silvery solids Form white compounds (e.g., sodium chloride) Shiny when cut. Can be cut with a knife – soft. Solid metals at RT – melting point decreases down group. Tarnish (turn dull) when react with O₂, therefore stored in oil. Form +1 ions – lose one electron to form full outer shell (more stable).

39. Why does reactivity increase down Group 1 (the alkali metals)? 40. What products are made when a metal reacts with water?	 Going down group, there are more shells. Distance between nucleus and outer electron is bigger. Weaker attraction between nucleus and outer electron. Less energy needed to lose electron. Reactivity increases. Metal + water → Metal hydroxide + hydrogen Hydrogen gas is explosive.
	7 0 0
41. What is the other name for group 7 elements?	Halogens
42. Why are chlorine, bromine, and iodine in the same group?	They have similar properties and have the same number of electrons in the outer shell.
43.Describe properties of the halogens (Group 7).	 Non-metals Diatomic (2 atoms that are covalently bonded together) e.g., F₂, Cl₂, Br₂, I₂, At₂ Form -1 ions – gain one electron to have full outer shell (stable) Forms acidic hydrogen halides when reacted with hydrogen
44. Why does reactivity decrease down Group 7?	 Going down group, there are more shells. Distance between nucleus and incoming electron is bigger. Weaker attraction between nucleus and incoming electron. More energy needed to gain electron. Reactivity decreases.
45.Describe the properties of chlorine, bromine, and iodine.	Chlorine – pale yellow gas at RT (room temperature) Bromine – deep red liquid at RT but red-brown gas Iodine – grey solid at RT but purple gas

Bonding, Structure and Properties of Matter

1. What is ionic bonding?	 Occurs between positive metal ion and negative non-metal ions. Involves the transfer of electrons from the metal to the non-metal.
2. What is covalent bonding?	 Occurs between non-metal atoms. Involves the sharing pairs of electrons held in place by strong attractions to the nucleus of atoms.
3. Why do atoms transfer or share electrons to form chemical bonds?	To gain a full outer shell of electrons, which is more stable.
4. Draw and explain the ionic dot and cross diagram for potassium fluoride.	One potassium atom loses one electron to get a full outer shell and so becomes a positive (+1) ion. One fluorine atom gains that electron for a full outer shell and becomes a negative (-1) ion.
5. Draw and explain the ionic dot and cross for sodium oxide	Two sodium atoms lose one electron each to form a +1 ion with a full outer shell. One oxygen atom gains both electrons to form a -2 ion with a full outer shell.
6. Describe the structure of an ionic compound.	A giant lattice with strong electrostatic forces of attraction between positive metal ions and negative non-metal ions. Key Na Na L L L L L L L L L L L L L L L L L

7. Why do ionic compounds have high melting points?	 Giant lattice Strong electrostatic forces of attraction between oppositely charged ions. Lots of energy needed to break forces.
8. Why do ionic compounds not conduct electricity when solid?	Ions are fixed and cannot move.
9. Why do ionic compounds conduct electricity when molten or dissolved in water?	Ionic bonds have broken, so ions are now free to move and carry charge through the liquid/solution.
10.Why do simple covalent molecules have low melting and boiling points?	 Small molecules Weak intermolecular forces Little energy needed to break forces
11. Why do simple covalent molecules not conduct electricity?	Molecules do not have an electrical charge (no delocalised electrons or ions)
12.Compare the strength of intermolecular forces and covalent bonds.	Covalent bonds are very strong but intermolecular forces are weak.
13.What are polymers?	Polymers are large molecules of monomers (small molecules) joined together in a polymerisation reaction.
14. Why do polymers have high melting points?	 The atoms are linked together by strong covalent bonds. Long molecule, so strong intermolecular forces Lots of energy needed to break forces.
15.Draw a diagram to show the representation of a polymer (polyethene)	$ \begin{pmatrix} H & H \\ - & - \\ C & - \\ H & H \end{pmatrix} $ poly(ethene)
16. Give 3 examples of giant covalent structures.	Diamond, graphite and silica (silicon dioxide)
17. Which element makes up graphite and diamond?	Carbon
18.What are allotropes?	Made of the same element, but has a different structure/arrangment of atoms.
19.Why do giant covalent substances have high melting points?	 Giant lattice Lots of strong covalent bonds Lots of energy needed to break bonds

20.Explain why diamond is hard	Each carbon atom in diamond is connected to 4 other carbon atoms by interconnecting covalent bonds. Therefore, it has no layers which can slide over each other.
21.Explain why graphite is soft	Each carbon atom in graphite is connected to 3 other carbon atoms in layers of hexagonal rings. These layers can slide over each other as there are no covalent bonds between the layer, just weak intermolecular forces.
22.Explain why graphite	Graphite has delocalised electrons that can move and
conducts electricity but not	carry charge through the whole structure.
diamond	Diamond has no delocalised electrons.
23.What is graphene? Give uses of graphene.	Graphene is a single layer of graphite, which is used in electronics and composites.
24. Give 3 properties of	High melting point (same as diamond and graphite)
graphene	Conducts electricity (same as graphite)
	Transparent (one layer thick)
	Flexible (strong covalent bonds)
25.Describe the structure of	Allotrope of carbon with a hollow shape. The shape is
fullerenes.	based on hexagonal rings but can also contains rings of 5 or 7 carbon atoms.
26.What was the first fullerene discovered?	Buckminsterfullerene (C ₆₀) which had a spherical structure
27.State one property of	Fullerenes have a large surface area.
fullerenes and suggest 2 uses	They are useful as catalysts.
of fullerenes.	They can be used as lubricants.
28.Describe the structure of	Cylindrical fullerenes called 'buckytubes'
carbon nanotubes.	They have a very high length:diameter ratio
	Tubes of graphene like sheets
29.What are the properties of	High tensile strength
carbon nanotubes?	Conducts electricity (and heat)
30. Give 3 uses of carbon	Nanotechnology
nanotubes	Electronics
	Materials (tennis rackets)
31. What is metallic bonding?	Where positive metals ions are closely packed together
22.14	with delocalised electrons flowing around them.
32. Why do metals conduct	Metals have delocalised electrons that can move and
electricity?	carry charge through the whole structure.

33.Why do metals conduct heat?	Delocalised electrons are free to move and transfer thermal energy.
34.Why do metals have high melting points?	 Giant lattices Strong electrostatic forces between positive metal ions and elocalised electrons Lots of energy needed to break forces
35.Why are pure metals malleable (soft)?	All atoms have the same size. Atoms are in layers. Atoms can slide over each other.
36.Why are alloys harder than pure metals?	Alloys contain <i>atoms</i> of different sizes. These different sizes distort the layered structure of the atoms in the alloy. Atoms cannot slide over each other.
37. Give the 4 state symbols	(s) solid (l) liquid (g) gas (aq) aqueous (dissolved in water)
38.Draw the particle model for solids, liquids, and gases	Solid Liquid Gas
39.Name the changes of state	Melting – solid → liquid Freezing – liquid → solid Boiling – liquid → gas Condensation – gas → liquid Sublimation – solid → gas
40. Give limitations of the particle model of matter	 Not all particles are spheres – some can be distorted by charged particles nearby. Atoms are not solid – mostly empty space. Does not show forces between the particles.

Quantitative Chemistry

1. What is the Mr of water	$H - 2 \times 1 = 2$
(H ₂ O)?	$O - 1 \times 16 = 16$
Ar - H = 1, O = 16	Mr = 2 + 16 = 18
2. What is the Mr of $KMnO_4$?	$K - 1 \times 39 = 39$
Ar – K = 38, O = 16, Mn = 55	$Mn - 1 \times 55 = 55$
	$O - 4 \times 16 = 64$
	Mr = 39 + 55 + 64 = 158
3. What is the Mr of $AI_2(CO_3)_3$?	$AI - 2 \times 27 = 54$
Ar – K = 38, O = 16, Mn = 55	$C - 3 \times 12 = 36$
	$O - 9 \times 16 = 144$
	Mr = 54 + 36 + 144 = 234
4. Calculate the percentage by	Fe – 2 x 56 = 112
mass of iron in iron oxide	$O - 3 \times 16 = 48$
(Fe ₂ O ₃)	Mr = 112 + 48 = 160
A _r – Fe = 56, O = 16	% by mass of iron = (112/160) x 100 = 70%
5. What is the theory of the	The law of conservation of mass states that no atoms
conservation of mass?	are lost or made during a chemical reaction, so the
	mass of the products equals the mass of the reactants.
	· ·
6. If there is a gaseous reactant,	Mass of reactant is not measured.
why does the mass appear to	Gas comes in from the atmosphere.
have changed?	Increases the mass.
7. If there is a gaseous product,	Products escapes into the atmosphere.
why does the mass appear to	Decreases the mass.
have changed?	
8. How do you calculate a mean	To work out the MEAN average:
of a set of values?	1. Add all of your values for the results of the
	experiment together (excluding anomalous results
	if there are any)
	2. Divide by the number of results you have.
9. How do you calculate the	The range is the difference between the highest and
range of a set of values?	lowest values.
10.How do you calculate the	Range ÷ 2
uncertainty of results from	Uncertainty = Mean ± (Range/2)
your experiment?	
11. Write the concentration	
equation triangle	
	Mass
	(g)
	concentration
	(g/dm³) volume (dm³)
	(ani)

12. HT only Define the term concentration	The mass of solute dissolved in a given voume of solvent. The more solute dissolved, the greater the concentration.
13.HT only What is a mole?	Unit of chemical measurement where 1 mole of a substance contains Avogadro's constant of particles.
14. <u>HT only</u> Write the mole equation triangle	MOLAR MASS (OR FORMULA MASS) MASS IN GRAMS AMOUNT IN MOLES
15. <u>HT only</u> What is Avogadro's constant?	Avogadro's constant is 6.02 x 10 ²³ atoms/molecules/ions. 1 mole of copper contains 6.02 x10 ²³ copper atoms . 1 mole of water contains 6.02 x10 ²³ water molecules .
16. HT only How do we calculate number of particles from the number of moles of a substance?	Number of particles = number of moles x Avogadro's Constant
17. HT only Define limiting reactant.	The reactant for which there are less moles.
18. HT only Define excess reactant.	When the amount/moles of reactant is more than needed.

Chemical Changes

_	A471 11 11 11 11 11 11 11 11 11 11 11 11 1	
$\begin{vmatrix} 1 \end{vmatrix}$	Write the equations for the following metals reacting	Sodium + oxygen → sodium oxide Magnesium + oxygen → magnesium oxide
	with oxygen; sodium,	Wagnesiam - oxygen -> magnesiam oxide
	magnesium	
2.	Write the equations for the	Sodium + water → sodium hydroxide + hydrogen
	following metals reacting	Magnesium + water → magnesium hydroxide + hydrogen
	with water; sodium, magnesium	
3.	What are oxidation and	Oxidation is the gain of oxygen.
	reduction, in terms of	Reduction is the loss of oxygen from a compound.
	oxygen?	
4.	What charge do metal ions	Positive, because they lose electrons in chemical
_	have?	reactions form a full outer shell.
5.	Why are group 1 metals the most reactive?	They only have 1 electron on the outer shell, so only need to lose 1 electron, so needs less energy to turn
	most reactive:	into a positive ion.
6.	State whether a reaction	Potassium, sodium, lithium, calcium and magnesium all
	occurs between the following	react with water to produce metal hydroxides and
	metals and water or dilute	hydrogen.
	acids: potassium, sodium,	Zinc, iron and copper do not react with water.
	lithium, calcium, magnesium,	Determinate and lithium we start with with
	zinc, iron and copper. If a reaction occurs, state the	Potassium, sodium and lithium react violently with dilute acids to produce metal salts and hydrogen.
	products of that reaction.	Calcium and magnesium react with dilute acids to
	p. 00.000 0. 0.000.000.000.	produce metal salts and hydrogen.
		Zinc and iron react slowly with dilute acids to produce
		metal salts and hydrogen.
		Copper does not react with dilute acids as it is less
	What is disable constant?	reactive than hydrogen
/.	What is displacement?	Displacement is where a more reactive metal takes the place of a less reactive metal in a compound, for
		example:
		aluminium + iron oxide \rightarrow aluminium oxide + iron.
8.	Which metals can be	Unreactive metals, such as gold, silver, and platinum.
	naturally found in the Earth	
	as pure metals?	
9.	What is a metal ore?	A naturally occurring that contains the metal in the
10	Which motals can be	form of a compound e.g., iron oxide
10	.Which metals can be extracted from their oxides	Zinc, iron, and copper can be extracted using reduction with carbon because carbon is more reactive than
	by reduction with carbon and	these metals.
	why?	
Ь	•	

11.HT only What is oxidation and reduction in terms of	Oxidation is loss of electrons. Reduction is gain of electrons.
electrons?	OILRIG
12.Write an equation for the following reactions.a) Magnesium and nitric acidb) Zinc and hydrochloric acidc) Iron and sulfuric acid	 a) Magnesium + nitric acid → magnesium nitrate + hydrogen b) Zinc + hydrochloric acid → zinc chloride + hydrogen c) Iron + sulfuric acid → iron sulfate + hydrogen
13. Which ions are formed in aqueous solutions of acids and alkalis?	Acids: H ⁺ Alkalis: OH ⁻
14. How can the pH of a solution be measured?	Using universal indicator or a pH meter/probe
15.Why is a pH probe (or pH meter) more accurate than universal indicator?	It gives the precise pH value rather than having to compare colours, which could be subjective.
16. What colour ranges would indicate an acidic, neutral, or alkaline solution using universal indicator?	Red-yellow = acidic Green = neutral Blue-purple = alkaline
17.What pH are acidic, neutral, and alkaline solutions?	pH below 7 = acidic pH 7 = neutral pH above 7 = alkaline
18. What is the difference between a base and an alkali?	Bases are any substances with a pH above 7, whilst alkalis are bases that dissolved in water (soluble metal hydroxides)
19.State the ionic equation for neutralisation.	$H^+(aq) + OH^-(aq) \longrightarrow H_2O(I)$ where (aq) is aqueous and (I) is liquid
20. Write an equation for the following reactions.	a) Calcium oxide + nitric acid → calcium nitrate + water
a) Calcium oxide and nitric acidb) Zinc hydroxide and hydrochloric acid	 b) Zinc hydroxide + hydrochloric acid → zinc chloride + water c) Iron carbonate + sulfuric acid → iron sulfate +
c) Iron carbonate and sulfuric acid	carbon dioxide + water
21. HT only What is the difference between weak and strong acids?	Strong acids fully ionise in aqueous solutions and have more H+ ions. Weak acids only partially ionise in aqueous solution to release very few H+ ions
22. <u>HT only</u> Give examples of	Strong: hydrochloric acid, sulfuric acid, nitric acid
strong and weak acids 23. HT only How is the pH of an acid related to its strength?	 Weak: ethanoic acid, citric acid and carbonic acid. The stronger an acid, the lower its pH.

24.HT only What is the	Dilute is when there a very few (acid) particles
difference between dilute	dissolved in a given volume of water.
and concentrated?	Concentrated is when there are lots of (acid) particles
	dissolved in a given volume of water.
25. <u>HT only</u> What is the	As the pH decreases by one unit, the hydrogen ion
relationship between pH and	concentration of the solution increases by a factor of
hydrogen ion concentration?	10.
26.What is electrolysis?	The splitting of molten or dissolved ionic compounds using electricity.
27. Why do ionic compounds	When molten or aqueous, the ions in ionic compounds
need to be aqueous or	can move and therefore can conduct electricity.
molten to be electrolysed?	
28.Why are electrodes made	Electrodes are made from graphite as it is cheap, has a
from graphite?	very high melting point and can conduct electricity.
29.Why does electrolysis use	Large amounts of energy are used in the extraction
large amounts of energy (and	process to melt the compounds and to produce the
is therefore more expensive)	electrical current.
compared reduction with	
carbon?	
30.How can aluminium be	Aluminium is manufactured by the electrolysis of a
extracted from its ore	molten mixture of aluminium oxide and cryolite
(bauxite)?	
31.Why is a mixture of cryolite	A mixture is used to lower the melting point of
and aluminium oxide used in	aluminium oxide. Therefore, less energy is required to
the manufacture of	produce the molten mixture required for electrolysis.
aluminium?	
32.Why can't aluminium be	Aluminium is more reactive than carbon.
extracted from its ore using	
reduction with carbon?	
33. Why does the electrode need	In the electrolysis of aluminium oxide, the positive
to be replaced regularly in	electrode wears away as oxygen formed reacts with
the electrolysis of metal	carbon to form carbon dioxide.
oxides, e.g., Aluminium	
oxide?	
34.Describe and explain what	Calcium ions are the positive metal ions and are
forms at the positive and	attracted to the negative electrode where is gains
negative electrode of a	electrons (reduction) to form calcium atoms.
molten ionic compound such	Ca ²⁺ + 2e ⁻ → Ca
as calcium chloride.	
	Chloride ions are the negative non-metal ions and are
	attracted to the positive electrode where it loses
	electrons (oxidation) to form chlorine molecules.
	$2Cl^{-} \rightarrow Cl_2 + 2e^{-}$

Energy Changes

Why does the total amount of energy in a reaction never change?	Energy is NEVER created or destroyed. Therefore, the total amount of energy at the end of a reaction must have been the same as the start.
2. What is an exothermic reaction in terms of temperature and energy change?	Temperature increases and energy is released into the surroundings. Products have less energy than reactants.
3. HT only What is an exothermic reaction in terms of the energy of the reactants and products?	An exothermic reaction occurs when the energy released by making bonds in the products is greater than energy needed to break the bonds in the reactants.
4. What is an endothermic reaction in terms of temperature and energy change?	Temperature decreases and heat energy is taken in from the surroundings. Products have more energy than surroundings
5. <u>HT only</u> What is an endothermic reaction in terms of the energy of the reactants?	An endothermic reaction occurs when the energy released by making bonds in the products is less than energy needed to break the bonds in the reactants.
6. Draw and label exothermic and endothermic energy diagrams.	Activation energy Reactants Reactants Products Reactants Reactants Reactants Reactants
	Reaction Progress Reaction Progress Exothermic Endothermic reaction
7. What is the collision theory?	Collision theory states that a reaction only occurs if particles collide with enough energy (activation energy).
8. What is activation energy?	Activation energy is the minimum energy needed for particles to react when they collide.
9. Give 3 examples of exothermic reactions.	Neutralisation, combustion, Self-heating cans
10. Give 2 examples of an endothermic reaction.	Thermal decomposition reactions, reaction of citric acid with sodium hydrogencarbonate

HT only - Calculating overall energy changes. Worked example.

Find the energy change in the following reaction using the bond energies given.

$$\begin{array}{c}
H \\
C \\
H
\end{array}$$
 $\begin{array}{c}
H \\
C \\
H
\end{array}$
 $\begin{array}{c}
O \\
O \\
O \\
H
\end{array}$
 $\begin{array}{c}
O \\
O \\
O \\
H
\end{array}$

Explain why the reaction is exothermic or endothermic using bond energies.

Answer

 $= -698 \, \text{kJ}$

This reaction is exothermic because more energy is released making bonds than is needed to break bonds.