Buttershaw Business and Enterprise College

AQA Combined Science Trilogy Physics Paper 1 Key Recall Facts

Energy, Electricity, Particle Model of Matter and Atomic Structure

Exam Date – Thursday 25th May

Name.....

Group.....

Teacher.....

Energy Recall Facts

 Name the different types of energy/energy stores. 	 Chemical Heat or Thermal Kinetic (movement) Gravitational Potential (anything above the ground) Elastic Potential Nuclear Magnetic Electrostatic
2. Define the term 'system'	A system is an object or group of objects
3. What causes an energy transfer?	A change in the system
4. Describe the changes in the	Chemical energy store of fuel decreases.
energy stores when water is brought to a boil in a kettle	Thermal energy store of water/surroundings increases.
5. Describe the changes in the	Kinetic energy store of car decreases.
energy stores when a moving	Thermal energy store of brakes/tyres/surroundings
car slows down (decelerates)	increases.
6. Describe the changes in the	Kinetic energy store of ball decreases.
energy stores, when a falling	EPE store of ball increases.
ball hits the ground	Thermal energy store of ball/surroundings increases.
7. Describe the changes in the	Chemical energy store of battery decreases.
energy stores of a battery	Kinetic energy store of car increases.
powered car.	Thermal energy store of car/surroundings increases.
8. Describe the changes in the	Chemical energy store of person decreases.
energy stores when a person	KE and GPE energy store of ball increases.
throws a ball in the air	Inermal energy store of surroundings increases.
9. Define the term law of	Law of conservation of energy is the idea that energy
conservation of energy	cannot be created or destroyed, but transferred
10 What is dissination?	Work is done against friction or registance in a circuit
10. What is dissipation?	to release thermal energy to surroundings
11 How is GPE affected by height?	As the height of an object increases, the GPE store of
11. How is Grie affected by height:	the object increases
12. How is kinetic energy affected	As the speed of an object increases, the kinetic energy
by speed?	store of the object increases.
13.Define the term 'specific heat	Specific heat capacity is the amount of energy needed
capacity'	to heat up 1kg of a substance by 1°C
14.What is power?	Power is the rate at which energy is transferred or the
	rate at which work is done. It can also be defined as
	the amount of energy transferred per second.

15.What is work done?	Force x distance moved. When work is done, energy is		
	transferred. This means Work done (J) = power (W) x		
	time (s).		
16.Define the term 'thermal	The ability of a material to allow the flow of heat		
conductivity'	through it. The higher the thermal conductivity, the		
	higher the rate of energy transfer by conduction		
17.How do you reduce unwanted	Thicker walls		
energy transfer in a house?	Walls made up of materials that have low thermal		
	conductivity values, such as brick		
	Loft insulation		
	Carpets		
	Double glazing windows		
18.What is a renewable resource?	Renewable resource is one that can be replenished as		
	it is being used and is not likely to run out.		
19.What is a finite resource?	Non-renewable resource that cannot be replenished at		
	the same rate as it is being used, so will run out.		
20. What are the 3 fossil fuels?	Coal, oil and natural gas		
21. Why does the UK use a mixture	Some renewables resources are unreliable, but there is		
of renewable/non-renewable	increasing pressure to reduce use of fossil fuels that		
energy resources?	are non-renewable and contribute to global warming		
	and climate change.		
22.What are the advantages and	Advantages		
disadvantages of using fossil	Reliable		
fuels?	Easily available		
	<u>Disadvantages</u>		
	Non-renewable		
	 Produces CO₂ 		
	Causes global warming		
23.What are the advantages and	<u>Advantages</u>		
disadvantages of nuclear fuel?	 Small amounts produce lots of energy. 		
	 Does not produce CO₂. 		
	Disadvantages		
	Non-renewable		
	Radioactive		
	 Increases chances of cancer 		
24.What are the advantages and	Advantages		
disadvantages of biofuel?	Renewable		
	• Carbon neutral – Plants take in CO ₂ when they grow		
	(photosynthesise)		
	Disadvantages		
	 Lots of land needed to grow plants. 		
	• This land could be used to grow crops for food.		

25.What are the advantages and disadvantages of wind energy?	 <u>Advantages</u> Renewable Free once installed. Does not produce CO₂. <u>Disadvantages</u> Noise and visual pollution Unreliable – depends on the weather.
26.What are the advantages and disadvantages of solar energy?	 <u>Advantages</u> Renewable Free once installed. Does not produce CO₂. <u>Disadvantages</u> Unreliable – depends on the weather. To meet demands, requires a lot of area in terms of solar cells.
27.What are the advantages and disadvantages of geothermal energy?	 <u>Advantages</u> Renewable Reliable all year long Does not produce CO₂. <u>Disadvantages</u> Location dependent – need to be near hot rocks. High start-up costs.
28.What are the advantages and disadvantages of hydroelectric power?	 <u>Advantages</u> Renewable Reliable source of energy Does not produce CO₂. <u>Disadvantages</u> Location dependent – need a huge water supply. High start-up costs. Destroys wildlife nearby and floods land.

Electricit,

1. Draw and label the following	o			
circuit symbols:				
a) Switch (open)	switch (closed) fuse			
b) Switch (closed)				
c) Cell				
d) Battery	V Volumeter			
e) Diode	battery			
f) Resistor	A ammeter			
g) Variable resistor				
h) LED				
i) Lamp				
j) Fuse				
k) Voltmeter	variable resistor			
l) Ammeter				
m) Thermistor				
n) LDR				
2. What is current?	It is the rate of flow of electric charge.			
What are the units of current?	Measured in amps			
3. Why are metals good	Because they have free moving electrons			
conductors?				
4. What is the source of potential	Cell,			
difference in a circuit?				
5. What is the relationship	As the potential difference is increased, current			
between potential difference	increases.			
and current at a fixed				
resistance?				
6. How is an ammeter connected	In series (within the loop)			
in a circuit?				
7. How is a voltmeter connected	Parallel to the component being measured			
in a circuit?				
8. What is resistance?	Opposing the flow of charge (current).			
What are the units of	Measured in ohms.			
resistance?				
9. What is the relationship	As resistance is increased, current decreases.			
between resistance and current				
at a fixed potential difference?				
10.What is the job of a variable	Alter the resistance of the circuit, and therefore			
resistor?	current and potential difference across different			
	components			
11.State Ohm's Law	Potential difference is directly proportional to the			
	current for a fixed resistor or resistor at constant			
	temperature			

12.Sketch the I-V graph of a fixed resistor, filament lamp and diode	A resister at constant A filament lamp. A diode.
13.Describe the difference between a linear and non-linear graph	Linear graph – straight line Non-linear graph – not a straight or curves
14.Which of the I-V graph(s) are linear?	Fixed resistor or resistor at constant temperature
15.Which of the I-V graph(s) are non-linear?	Filament lamp (bulb) and diode
16.Explain the shape of the fixed resistor line	Resistance is constant, so straight line, and follows Ohm's Law
17.Explain the shape of the filament lamp graph	As potential difference and current increases, bulb gets hotter, and this increases resistance
18.Explain the shape of the diode graph	Very high resistance in reverse direction, so no current Very low resistance in forward direction, so rapid increase in current
19.Describe how the resistance of a thermistor changes with temperature	As the temperature across a thermistor increases, the resistance decreases so the current increases.
20.What are the uses of a thermistor?	Thermostat Sensors to regulate cold and heat
21.Describe how the resistance of a LDR changes with light intensity	As the light intensity falling on a LDR increases, the resistance decreases, so current increases.
22.State some use of a LDR	Light intensity meters and sensors for street lamps.
 23.What are the rules of series circuits in terms of the a) Current b) Potential difference c) Total resistance 	 a) Current is the same through each component. b) Potential difference of the battery is shared between the components. c) Total resistance is all components added together.
 24.What are the rules of parallel circuits in terms of the a) Current b) Potential difference c) Total resistance 	 a) Total current in circuit is split between loops. b) Potential difference of each loop is the same as the battery. c) Total resistance is smaller than the value of the smallest resistor.
25.What happens when resistors are combined in parallel?	The total resistance of the circuit decreases, as the electrons (current) has more pathways/loops to flow through.

26.Describe the difference between alternating and direct	A direct potential difference only has one direction (polarity).
potential different	An alternating current changes the direction (polarity)
27. What is the voltage and	230V and 50Hz
frequency of the UK mains	
electricity?	
28.What is the function, colour and	a) Earth is a safety wire in a metal appliance that has a
position of the:	potential difference of 0V. It is yellow/green striped
a) Earth wire	and goes to the top
b) Live wire	b) Live wire carries a potential difference of 230V. It is
c) Neutral wire	brown and goes right.
	c) Neutral wire completes the circuit at 0V. It is blue
	and goes left.
29.Why is the earth wire	It carries the current to the Earth if the metal appliance
connected to the metal casing?	becomes live. It would be the path of least resistance.
30.What is the National Grid?	Series of pylons, cables and transformers that transfers
	electrical power from power station to consumers.
31.What is the importance of the	Increases the potential difference which decreases the
step-up transformer?	current. This reduces the energy loss via heating of
	wires and so increases efficiency.
32.What is the function of the	Support and hold the cables
pylons?	
33.What is the function of the	Made up of low resistance wires, to reduce loss via
cables?	heating.
34. What is the importance of the	Decreases the potential difference to 230V, so it is
step-down transformer?	safer for consumers.

Particle Model of Matter Recall Facts

1. How does the arrangement of particles affect density?	The more tightly packed particles are, the denser the substance.
2. Describe the arrangement and motion of particles in solids.	 Fixed positions/regular arrangement. Closely packed together, so highest density. Vibrate in fixed positions. Strong forces of attraction between particles.
3. Describe the arrangement and motion of particles in liquids.	 Particles still touching but no regular arrangement. Less dense than solids. Particles can move randomly at slow speeds, so liquids can flow. Weaker forces of attraction between particles.
 Describe the arrangement and motion of particles in gases. 	 Particles are far apart, so lowest density. Particles can move very fast (random speeds) in random directions. Have very low densities compared to solids and liquids. No forces of attraction between particles
5. Name the changes of state	Melting – solid \rightarrow liquid Freezing – liquid \rightarrow solid Boiling – liquid \rightarrow gas Condensation – gas \rightarrow liquid Sublimation – solid \rightarrow gas
6. Why is the change of state known as a physical change?	There is no change in the chemical. Ice, water and steam are all H ₂ O.
7. In a change of state, mass is conserved. What does this mean?	If 1kg of water is boiled, there would be 1kg of steam formed. The mass does not change.
8. What is internal energy?	Internal energy = potential energy + kinetic energy The total energy of all the particles in the system
9. In what 2 ways does heating change the energy of the particles?	 Increases the temperature/kinetic energy of the particles. Produces a change of state (increases potential energy)
10.Heating curve - Why does the temperature not rise when a substance is at melting point?	 Energy is being used to break bonds or overcome the forces of attraction between molecules, so temperature does not rise. Note: There is no change in kinetic energy but there is an increase in the potential energy.

11.Cooling curve – Why does the	Energy is released to the surroundings. No change in
temperature not decrease	kinetic energy, but decrease in potential energy and
when a gas changes to a liquid?	internal energy
12. Define the term 'specific heat	The amount of energy needed to change the
capacity'	temperature of 1kg of a substance by 1°C
13. Define the term 'specific latent	The energy needed to change the state of one kilogram
heat'.	of a substance with no change in temperature.
14. Define the term 'specific latent	The energy needed to turn 1kg of a solid into a liquid
heat of fusion'?	with no change in temperature.
15.What is latent heat of	The energy needed to turn 1kg of a liquid into a gas
vaporisation?	with no change in temperature.
16.Explain how gas pressure occurs	When particles of a gas collide with the walls of the
	container, they create a force at right angles.
	The higher the force, the higher the pressure applied
	depending on the size of the area.
17.Explain the relationship	 As temperature increases, particles have more
between temperature and	kinetic energy and move faster.
pressure	• This means there are more frequent collisions with
	the walls of the container.
	This creates more force per unit area.
	This increases pressure.

Atomic Structure Recall Facts

 Name the 3 subatomic particles in the atom and state their location 	•	Protons found Neutrons fou Electrons fou nucleus	d in the nucle nd in the nuc nd on shells/	eus (centre of leus (centre c energy levels	atom) of atom) around the
2. What is the relative charge, relative mass and symbol for: Proton		Particle	Relative charge	Relative mass	Symbol
Electron		proton	+1	1	р
		neutron	0	1	n
		electron	-1	1/1836 (5.45 x 10-4)	e-
3. What is the radius of an atom?	0.1	nm (10 ⁻¹⁰ m)			
4. Size of the nucleus of an atom?	(10	⁻¹⁴ m)			
5. Why do atoms have no overall charge?	Equ ele	Equal number of positive protons and negative electrons.			
6. How does an atom form an ion?	Ato out	m has gained er shell.	l or lost elect	rons to form a	a full, stable
7. How can electron be excited to a higher energy level further from nucleus?	Bya	absorbing Ele	ctromagnetic	Radiation	
8. What happens when electrons move down to a lower energy level closer to nucleus?	The of c	ey emit Electr coloured light	omagnetic Ra)	adiation (ofter	n in the form
9. Name the Scientists in order of the discoveries made for the history of the atom. What did they discover?	•	Dalton 1803 - atoms and at JJ Thompson discovering th Rutherford 19 disproved the Neils Bohr 19 around nucle Chadwick 193	- Theory that oms are indiv 1897 – Plum ne electron. 907 – Alpha s e plum puddir 13 – Idea of e us. Bohr moc 32 – Discover	all substance visible (spheric pudding mod cattering expendence ng model. electrons in er lel. ed the neutro	s made of cal model) el after eriment that nergy levels n

10.Compare the plum pudding	In the plum pudding model, the protons are not
and the Bohr model	subatomic particles but in a ball of positive charge.
	WHEREAS
	Nuclear model the protons are in the nucleus.
	Plum pudding electrons are embedded in the ball of
	positive charge.
	WHEREAS
	Nuclear model the electrons are in shells or energy
	levels.
11.What is mass number?	Number of protons + number of neutrons
12.What is atomic number?	Number of protons
13.How would you work out the	Look at the atomic number
number of protons or	
electrons of an atom?	
14.How would you work out the	Mass number – atomic number
number of neutrons of an	
atom?	
15.What is an isotope?	An isotope is an atom of the same element with the
	same number of protons but different number of
	neutrons.
16.What is radioactive decay?	Unstable nuclei emit a particle and some gamma radiation
17.How can radioactive decay	Geiger-Muller (GM) tube
be detected?	Photographic film
18.Why is radioactive decay	Cannot predict which nucleus will decay next or when
random?	a particular nucleus will decay.
19.Define the term activity and	Rate at which a source of unstable nuclei decay.
state its units.	It is measured in Becquerels (Bq).
20. Define the term count rate	Number of decays per second measured by a detector.
21.Describe the properties of	a) He or α
alpha radiation in terms of:	b) 2 protons and 2 neutrons (helium nucleus)
a) Symbol	c) Positive (+2)
b) What is it composed of	d) Very low penetrating ability – few cm in air
c) Charge	e) Highly ionising
d) Penetrating ability (range in air)	f) Stopped by paper, skin
e) Ionisation energy	
f) Thinnest material stopped by	

 22.Describe the properties of alpha radiation in terms of: a) Symbol b) What is it composed of c) Charge d) Penetrating ability (range in air) e) Ionisation energy f) Thinnest material stopped by 	 a) e or β b) Fast moving electron c) Negative d) Moderate penetrating ability – few metres in air e) Weakly ionising f) Stopped by thin piece of aluminium or perspex
 23.Describe the properties of alpha radiation in terms of: a) Symbol b) What is it composed of c) Charge d) Penetrating ability (range in air) e) Ionisation energy f) Thinnest material stopped by 	 a) y b) Electromagnetic wave from nucleus c) No charge d) Very high penetrating ability – possible infinite distance through air e) Very weak ionising ability f) Stopped by thick piece of lead
24.State what happens to the atomic number and mass number during alpha decay	Atomic number decreases by 2. Mass number decreases by 1.
25.State what happens to the atomic number and mass number during beta decay	Atomic number increases by 1. Mass number stays the same.
26.What is half life?	 The half-life of a radioactive isotope is the time it takes for the number of radioactive nuclei of the isotope in a sample to halve, <u>or</u> the time it takes for the count rate (or activity) from a sample containing the isotope to fall to half its initial level.

27.How can half-life be calculated from a graph?	Calculations using half-life Use the graph to determine the half life of the radioisotope. You must shown on the graph how you determined this for the method marks. $y_{0} = \frac{1}{2} + \frac$
28.If a substance has a short half-life, is it more stable or	More unstable – nucleis are decaying very quickly. This would mean that the level of hazard decreases
29. What is ionising radiation? Describe its effects	Ionising radiation has enough energy to knock electrons off atoms. This changes molecules in cells, such as DNA. Can damage cells, cause mutations and cancer.
30.What is irradiation?	Irradiation is the process of exposing an object to nuclear radiation. The irradiated object does not become radioactive.
31.What is contamination?	Contamination is the when the radioactive atoms are on the object or swallowed/breathed in by the person. Touching radioactive materials without gloves can lead to contamination.
32.How do you prevent radioactive contamination?	Gloves, tongs, and face masks.