C1 and C3 - Atomic Structure

Particle	Relative Mass	Charge
proton	1	+1
neutron	1	0
electron	Very small	-1

Atomic Structure Key Points

- Positive protons and neutral neutrons are found in a tiny nucleus in the centre with negative electrons orbiting in shells (energy levels around the nucleus
- Electrons have a very small mass compared to protons and neutrons
- Atoms have no overall charge as they have the same number of positive protons and negative electrons
- Size of atoms is approximately 0.1nm (1 x 10⁻¹⁰m)
- Nucleus is 10,000 times smaller than the atom

Atomic Number and Mass Number

- Atomic number is the number of protons
- Mass number is the number of protons and neutrons

- Number of protons = atomic number e.g. 11 ٠
- Number of electrons = atomic number e.g. 11 •
- Number of neutrons = mass number atomic number e.g.12

r		1	,
Name of Scientist and Year	Picture and Name of Model	Key Discoveries/Theory	The relative formula (A _r) of the atoms in
John Dalton (1803)	Dalton "Billiard Ball" Model	Idea that atoms were solid spheres that could not be divided any further	Example - H_2SO_4 Hydrogen $\rightarrow 2 \times 1 =$ Sulfur $\rightarrow 1 \times 32 = 32$ Oxygen $\rightarrow 4 \times 16 = 0$ Total $M_r = 98$
JJ Thomson (1897)	Thomson *Plum Pudding* Model	Sphere of positive charge with negative electrons scattered within it. Disproves idea of Dalton's model of atoms being indivisible	Example - Ca(NO ₃):Calcium \rightarrow 1 x 40 =Nitrogen \rightarrow 2 x 14 =Oxygen \rightarrow 6 x 16 = 9Total $M_r = 164$
Ernest Rutherford (1909)	Rutherford's Nuclear Model	Tiny positive nucleus at the centre with negative electrons orbiting around it	Calculating Perce Example – Calculate Step 1 – Work out 1 Potassium → 2 x 39 Oxygen → 1 x 16 =
Neils Bohr (1911)	A A A A A A A A A A A A A A	Tiny positive nucleus with negative electrons orbiting in shells (energy levels) around the nucleus	Total M _r = 94 <u>Step 2 – Work out t</u> (78/94) × 100 = 83%
James Chadwick (1932)	Bohr's Nuclear Model	Discovered the neutron. Explains isotopes	Calculating Relative Atomic Ma element found on E <u>Example</u>

Isotopes

Isotopes are atoms of the same element with the same number of protons but different number of neutrons

le	lati	ve	For	mu	a
			~		

a mass (M_r) is the sum of all the relative atomic masses the formula.

entage by Mass

tive Atomic Mass

ass is the average mass number of all the isotopes of an Earth (or a sample)

ve atomic mass of a sample of Titanium that contains 20% Titanium-46, 20% titanium-47 and 60% Titanium-48

Step 1 – Multiply mass numbers by percentages

Titanium-46 \rightarrow 46 x 20 = 920 Titanium-47 \rightarrow 47 x 20 = 940 Titanium-48 → 48 x 60 = 2880

Step 2 – Add all answers together 920 + 940 + 2880 = 4740

Step 3 – Divide by 100 $4740 \div 100 = 47.4$

Mass (M_r)

: 2

64

e the percentage by mass of potassium (K) in K₂O the total M_r first) = 78 16

the percentage of potassium out of the total

C1 - Periodic Table

Groups and Periods

The modern periodic table is arranged by atomic (proton) number.

A group is a column on the periodic table and tells you the number of electrons in the outer shell of the atom. Elements in the same group will have the same number of electrons in the outer and also will have similar physical and chemical peroperties

A period is a row on the periodic table and t electron shell in the atom

For example, chlorine on the right has 7 electrons in the outer shell, so has 7 electrons in the outer shell. It also has 3 electron shells, so it is period 3

Development of the Periodic Table

Newlands and Mendeleev both arranged the elements by atomic weight. No protons discovered at the time, so could not be in order of atomic number.

Newland's realised that every 8th element had similar properties, and therefore his theory was called Law of Octaves. However, he ended up putting elements such as oxygen and iron together when they do not have similar properties. Therefore. His periodic table was accepted.

Mendeleev also arranged the elements by atomic weight, but did 3 things different that allowed his ideas to become accepted

- Left gaps for undiscovered elements, and later these elements got discovered and fit into these gaps
- Mendeleev predicted the properties of these future elements, and he • was correct in terms of his predictions
- Mendeleev switch some elements around (like Iodine and Tellurium) so they fit into groups with similar properties

Metals and Non-metals

They are found at the **left** part of the periodic table. Non-metals are at the **right** of the table.

Metals

Are strong, malleable, good conductors of electricity and heat. They bond metallically.

Non-Metals

Are dull, brittle, and not always solids at room temperature.

<u>Group 7 – Haloge</u>ns

Group 7 elements have 7 electrons in the outer shell, so will react to gain one electron to have a full outer shell.

Properties

- Coloured gases
- Poisonous and smelly
- Very reactive
- For -1 ions

Trends

- Boiling point increases down the group (bigger atom, so stronger intermolecular forces)
- Colour gets darker down group (chlorine – pale yellow gas, bromine – red liquid, iodine – grey solid)
- Gets less reactive down the group more shells, bigger distance between positive nucleus and incoming electron, so weaker attraction and harder to gain electron

Reihen	Gruppe L 	Gruppe IL R0	Gruppe III. R*0 ³	Gruppe IV. RH ⁴ RO ²	Gruppe V. RH* R*0*	Gruppe VL RH* RO ³	Gruppe VIL RH R'0'	Gruppo VIII. R04
1	H=1		1		1	1	1	
2	Li=7	Be= 9,4	B=11	C=12	N=14	0=16	F== 19	
3	Na=23	Mg=24	Al=27,3	Si=28	P=31	8=32	C1=35,5	
4	K=39	Ca=40	-=44	Ti=48	V=51	Cr=52	Mn=55	Fe=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn=65	-=68	-=72	As=75	Sem 78	Br== 80	
6	Rb=85	8r=87	?Yt=88	Zr=90	Nb == 94	Mo=96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag=108)	Cd=112	In=113	Sn=118	Sb=122	Te=125	J=127	
8	Cs=133	Ba == 137	?Di=138	?Ce=140	-	-	-	
9	()	-	-	-	-	-	-	
10	-	-	?Er=178	7La=180	Ta = 182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	Hg = 200	T1=204	Pb=207	Bi=208	-	-	
12	-	-	-	Tb=231	-	U=240	-	

Groups 0 – Noble Gases

electrons in the outer shell.

Properties

- They are all gases with very low boiling points • They are unreactive – full outer shell, so do not need to gain or lose electrons
- They are colourless gases

Trends

- Density increases down the group

Group 1 Alkali Metals

outer shell

Properties

- Soft can be cut with a knife
- Low density floats on water
- Low melting points for metals
- Dull – reacts with oxygen in the air
- Very reactive

Trends

d'a

- forces)
- Gets more reactive down the group more shells, bigger distance between positive nucleus and outer electron, so weaker attraction and easier to lose outer electron

Reactions with Water

lilac flame

Group 0 elements are found on the right hand of the periodic table and either have 2 or 8

Boiling point increases down the group (bigger atom, so stronger intermolecular forces)

- Group 1 elements are found on the left hand side of the periodic table and all have 1 electron in the outer to shell. This means they all react to lose 1 electron to have a full

- Melting point decreases down the group (bigger atom, so stronger intermolecular
- They are called alkali metals as they all react with water to produce a metal hydroxide, which is an alkali. They all also fizz within the water (hydrogen released), move around the surface of the water and turn into a molten ball. Potassium will also set alight into a

C2 - Ionic and Covalent

Atoms and lons

Atoms have no overall charge as they have the same number of positive protons and negative electrons.

lons are atoms that have gained electrons (negative ion) or lost electrons (positive ion).

Metals lose electrons to become positive ions and have a full outer shell.

Non-metals gain electrons to become negative ions and have a full outer shell.

Properties of Ionic Compounds

Ionic compounds have high melting points because....

- They are giant lattices. •
- Have strong electrostatic forces of attraction between oppositely charged ions.
- They need lots of energy to break forces. •

Ionic compounds do not conduct electricity when solid as the ions are fixed and cannot move.

Ionic compounds do conduct electricity when molten or dissolved in water as the ions can now move and carry charge through whole structure.

Ionic Bonding

In an ionic bond, the metal atom(s) lose electrons to become a positive ion. The nonmetal atom(s) gain electrons to become a negative ion.

An ionic bond is a strong electrostatic attraction between the oppositely charged ions.

Example – Sodium Chloride (NaCl)

- One sodium atom loses 1 electron to form a Na⁺ ion. •
- One chlorine atom gains 1 electron to form a Cl⁻ ion.

Example – Magnesium Oxide (MgO)

- One magnesium atom loses 2 electrons to become a Mg^{2+} ion. •
- One oxygen atom gains 2 electrons to become a O²⁻ ion.

Example – Calcium Fluoride (CaF₂)

- One calcium atom loses 2 electrons to become a Ca²⁺ ion. •
- Two fluoride atoms gain 1 electron each to form F⁻ ions.

Example – Sodium Oxide (Na₂O)

Two sodium atoms lose 1 electron each to become a Na⁺ ion. • • One oxygen atom gains 2 electrons to become a O^{2-} ion.

Covalent Bonding

- This is when non-metal atoms share pair(s) of electrons

of the electrons (6) to make 8 overall.

0 = 0

Properties of Simple Covalent Substances

Simple covalent substances have low melting points because.....

- They are small molecules.
- With weak intermolecular forces.
- They need little energy to break forces. •

· Hydrogen will always share one pair of electrons in an overlap. It will also only have 2 electrons on its shell

· Group 7 elements will always share one pair of electrons in an overlap. However, remember to draw the rest

• Oxygen (and sulfur) will always share 2 pairs of electrons overall (could be with different atoms)

Simple covalent substances do not conduct electricity as they do not have any charges that can move and carry charge through the whole structure.

Giant Covalent Substances

These are macromolecules made of a giant lattice composed of lots of strong covalent bonds (non-metal atoms that share pairs of electrons)

Examples include allotropes (same element but different 3D structures) of carbon, such as diamond, graphite, graphene, and fullerenes.

Silicon dioxide, also known as silica, (SiO₂) is also a giant covalent substance, which has a similar structure to diamond, and therefore similar properties.

Polymers

Polymers are long chains of monomers (small units) joined together in a polymerisation reaction (kind of like a chain of paper clips joined together).

The backbone of the chain is joined together by strong covalent bonds.

There are intermolecular forces between the chains. AS the chains are long, the intermolecular forces are strong, and therefore require lots of energy to break. So, polymers are solids with generally high melting points, but lower than ionic compounds and giant covalent substances.

Writing and Naming Polymers

Diamond and Graphite

Both diamond and graphite are made of carbon elements.

They have different structures due to the conditions in which there were formed.

Due to their different structures, they have some different properties.

	Diamond	Graphite
Picture	DIAMOND	GRAPHITE
Structure	Each C atom is connected 4 other carbon atoms in a large tetrahedral structure	Each C atom is connected to 3 other carbon atoms in layers of hexagonal rings. This leaves an electron per carbon atom that is delocalised.
Melting Point	Very high, as it is a giant molecule with lots of strong covalent bonds, that require a lot of energy to break.	Very high, as it is a giant molecule with lots of strong covalent bonds, that require a lot of energy to break.
Hardness	Tetrahedral structure with no layers, so atoms cannot slide over each other.	Layers of hexagonal rings. Weak intermolecular forces between layers, so layers can slide over each other
Electrical Conductivity	No delocalised electrons to move and carry charge through whole structure	Delocalised electrons move in the between the layers and carry charge through whole structure.

Fullerenes

- Can be in the shape of a hollow sphere or a hollow (nano)tube.
- First fullerene discovered was C₆₀ called buckminsterfullerene.
- The spherical structure is usually made of hexagonal rings but can be pentagons/heptagons.

Uses of Spherical Fullerenes

- <u>Catalysts</u> large surface area (hollow), and therefore less catalyst needed for same effect. •
- **Deliver Drugs in Body** drug trapped inside the hollow structure, so it has fewer side effects on • the other cells of the body.
- **Lubricant** can roll due to its shape to reduce friction.

Uses of Nanotubes

- Conducts heat and electricity.
- They have high length to diameter ratio (very long compared to thickness

Tennis Rackets/Golf Clubs - have a very high tensile strength (doesn't break easily when stretched) without adding much weight.

Electronics – has delocalised electrons.

Used in electronics – has delocalised electrons to move and carry charge through whole structure. It is also transparent and very lightweight.

Used in composites - (made of 2 different materials) as it is lightweight and can add a lot of strength without adding to the weight of the material.

Metals are giant lattices with layers of positive metal atoms surrounded by a sea of delocalised electrons.

The delocalised electrons are the electrons on the outer shell.

High melting point

• Giant lattices

Metals

Conducts Electricity

- Delocalised electrons

Conducts Heat

- Delocalised electrons

Malleable

Alloys

- •

Graphene

• With strong electronstatic forces of attraction between positive metal ions and delocalised electrons. This is a metallic bond. Lots of energy requried to break forces.

That move and carry charge through whole structure

• That move and transfer thermal energy

• Atoms are the same size, in layers. Atoms can slide over each other.

Graphene is a single layer of graphite.

Conservation of Mass

This is the idea that the total mass of reactants before a reaction is equal to the total mass of products after the reaction. The atoms simply rearrange themselves to form new chemicals.

Example 1

2Cu **O**₂ \rightarrow CuO \rightarrow 23g 15g Х

In the case above, the total mass of the products after the reaction is 23g. So, the mass of oxygen is 23-15= 8g.

Example	<u>e 2</u>				
TiCl ₄	+	2Mg \rightarrow	Ti	+	2MgCl ₂
40kg	+	20kg	х	+	33kg

In the case above, the total mass of the reactants before the reaction is 60kg. So, the mass of Ti is 60-33 = 27kg

Apparent Changes in Mass

In oxidation reactions as shown above, the oxygen is a gaseous reactant that comes in from the air. The mass of oxygen is not measured, and so the mass of reaction appears to increase.

In thermal decomposition reactions as show above, carbon dioxide is a gaseous product which escapes into the air. The mass of carbon dioxide is not measured, and so the mass of the reaction appears to increase.

Concentration

Concentration is the amount of mass dissolved in a certain volume of liquid (usually water). It can be calculated using the equation and triangle below.

One thing to note here is that the volume has to be in dm³ but is usually given in cm³. To convert cm³ into dm³, divide by 1000.

<u>C3 - Quantitative Chemistry</u>

Avogadro's Constant and Moles (HT only)

A mole of any substance contains the same number of particles (Avogadro's Constant) and is linked by the equation below.

Number of particles = moles x Avogadro's constant

Avogadro's constant is 6.022 x 10²³

This means that 1 mole of substances will have the same number of particles but different masses in grams. The mass of one mole of any substance is the M_r in grams.

Examples

1 mole of H2O is 18g. 1 mole of Cu is 63.5g. 1 mole of Mg is 24g.

Limiting Reactants (HT only)

In any reaction, there is usually one reactant that is limiting (less moles) and one in excess (more moles). In your exam, you maybe asked to work out the limiting reactant (as well as use the the limiting reactant to work out reacting masses.

Use the example below to work out the limiting reactant.

Reacting Masses Examples (HT only)

Step 1 - work out the M, for the 2 substances in the question

- M, of Al₂O₃ is 102
- M, of Al is 27
- In this case, this is Al₂O₃
- Moles = mass/M,
- Moles of Al₂O₃ = 1000g/102 = 9.80moles
- Looking at the equation 2Al₂O₃ : 4Al
- So, to get the moles of Al, you double the moles of Al₂O₃
- Moles of Al = 9.80 x 2 = 19.6 moles

Step 4 - work out the mass of the substance using mass = moles x Mr • Mass of Al = 19.6 x 27 = 529g

\langle	3	Ν
_	_	_

Relative atomic masses (Ar): Mg = 24 Fe = 56

Calculate the mass of iron produced, in mg

3:2 ratio

	3Mg	2Fe
Mass	0.120g	0.186g, so 186mg
Mr	24	56
Moles	0.005	0.00333

Balancing Equations Using Moles (HT only)

In a reaction, 9.2 oxygen gas (O₂) t

- 1.Write down the symbol equation
- 2.Write down the mass
- 3.Write down the M_r
- **4.**Calculate the number of moles. Moles = mass / M_r
- 5.Convert to the simplest ratio
- 6.Write down the balanced equation

Aluminium is made by the electrolysis of aluminium oxide as shown in the equation below. What mass of aluminium can be formed from 1 kg of aluminium oxide? Give your answer to 3 significant figures. $2Al_2O_3 \rightarrow 4Al + 3O_2$

Step 2 - calculate the moles of the substance for which the mass is given

Step 3 - use the symbol equation, and ratios to work out the moles of the substance for which you need to find the mass

As soon as you see a question like Magnesium reacts with iron chloride solution. this, think table!! Mg → 2 FeCl₃ → 2 Fe → 3 MgCl₂

(c) 0.120 g of magnesium reacts with excess iron chloride solution.

g of to gi	sodium ve 12.4 g	n (Na) rea g sodium	cted with 3.2 g oxide (Na ₂ O).	
	Na	+ O ₂		Na ₂ O
ses	9.2 g	3.2 g		12.4 g
	23	32		62
	0.4	0.1		0.2
	4	1		2
	4 Na	+ O ₂		2 Na ₂ O

C4 - Acids, Bases and Neutralisation

In aqueous solutions, acids produce H⁺ ions and alkalis produce OH⁻ ions.

Neutral solutions are pH7 and are neither acids or alkalis.

For example, in neutralisation reactions, hydrogen ions from an acid react with hydroxide ions from an alkali to produce water:

 $H^* + OH^- \longrightarrow H_2O$

Strong and Weak Acids (Higher Tier Only)

A strong acid completely dissociates in a solution. For example: HCl → H⁺ + Cl⁻

Hydrochloric acid is able to completely dissociate in solution to form hydrogen and chloride ions.

Examples of strong acids include nitric acid (HNO₃) and sulfuric acid (H₂SO₄).

Weak acids in comparison only partially dissociate.

For example acetic acid partially dissociates to form a hydrogen and acetate ion.

 $CH_3COOH \Longrightarrow CH_3COO^- + H^+$

The **double arrow** symbol indicates that the reaction is reversible. Both the forward and reverse reaction occur at the same time and the reaction never goes to completion.

Reactions of Acids

Making a Soluble Salt (Required Practical)

Method for making copper sulfate crystals

- 1. Add solid copper oxide to sulfuric acid until there is an excess of copper oxide that does not dissolve. This is to make sure all acid has reacted
- Mixture is heated to speed up the rate of reaction and make as much product as possible and make sure 2. all acid has reacted
- Filter the mixture to remove excess copper oxide using filter paper and a funnel. Collect the filtrate 3. (copper sulfate solution) in an evaporating basin
- 4. Once some of the solvent has evaporated, or when you see crystals start to form (the point of crystallisation), remove the dish from the heat and leave the solution to cool and dry in a warm place
- 5. The salt should start to form crystals as it becomes insoluble in the cold, highly concentrated solution.

Making Salts: Summary

solution of the salt with the xcess solid left behind

3. Heat the solution to start evaporating the water from the solution

from the	Acid Used	Salt Produced
arbonate, be second	hydrochloric	chloride
nes from the	nitric	nitrate
o make it.	sulfuric	sulfate

Reactions with Carbonates

The general formula for the reaction between an acid and a carbonate is: acid + carbonate ---> salt + water + carbon dioxide

hydrochloric acid + calcium carbonate — calcium chloride + water

C5 - Energy Changes

	Endothermic	Exothermic
Temperature increase or Temperature decrease?	Temperature decrease	Temperature increase
Heat energy released to or absorbed from surroundings?	Heat energy absorbed from surroundings	Heat energy released to surroundings
What has more energy? Reactants or products?	Products	Reactants
Energy Profile Diagram	Activation Energy Products Energy absorbed Reaction Progress	Activation Energy Reactants Energy released Products Reaction Progress
Examples	Sports injury packs Thermal decomposition Photosynthesis	Neutralisation reactions Combustion reactions Respiration

Activation Energy - the minimum amount of energy required for a chemical reaction to take place.

Catalysts - increase the rate of a reaction. Catalysts provide an alternative pathway for a chemical reaction to take place by lowering the activation energy.

Calculating Energy Changes – HT Only

0 = н--H + 20=0

Bond

Bond

с — н

 $\circ = \circ$

c = o

о — н

Energy Changes – Requ	uired Practical
-----------------------	-----------------

- 1) You can measure the amount of energy released by a chemical reaction (in solution) by taking the temperature of the reagents, mixing them in a polystyrene cup and measuring the temperature of the solution at the end of the reaction. Easy.
- 2) The biggest problem with energy measurements is the amount of energy lost to the surroundings.
- 3) You can reduce it a bit by putting the polystyrene cup into a beaker of cotton wool to give more insulation, and putting a lid on the cup to reduce energy lost by evaporation.
- 4) This method works for neutralisation reactions or reactions between metals and acids, or carbonates and acids.
- 5) You can also use this method to investigate what effect different variables have on the amount of energy transferred - e.g. the mass or concentration of the reactants used.
- 6) Here's how you could test the effect of acid concentration on the energy released in a neutralisation reaction between hydrochloric acid (HCl) and sodium hydroxide (NaOH):
- 1) Put 25 cm³ of 0.25 mol/dm³ of hydrochloric acid and sodium hydroxide in separate beakers.
- 2) Place the beakers in a water bath set to 25 °C until they are both at the same temperature (25 °C).
- 3) Add the HCl followed by the NaOH to a polystyrene cup with a lid as in the diagram above.
- 4) Take the temperature of the mixture every 30 seconds, and record the highest temperature.
- 5) Repeat steps 1-4 using 0.5 mol/dm³ and then 1 mol/dm³ of hydrochloric acid.

ANDAL

Energy change = 2468 - 3466 = -818kJ/mol This is an exothermic reaction as more energy released when forming bonds than needed to break bonds

e complete combustion of one mole of		
	[3 marks]	
CO ₂ + 2H ₂	0	
=C=O + 2H-C	р—н	
energy in kJ/mol		
413		
498		
805		
464		
Bonds Forme 2 C=O 2 x 805 4 O-H 4 x 464 Total Bonds Fo	d = 1610 = 1856 ormed = 3466	

C6 - Rate of Reaction

Rate of Reaction

- Rate of Reaction is how fast a reaction is occurring.
- Can be calculated by measuring the formation of products over • time or how quickly reactants are used up.
- Equations for rate of reaction are....

mean rate of reaction = $\frac{\text{quantity of reactant used}}{\text{time to the set of the set o$

mean rate of reaction = quantity of product formed

- Units for rate of reaction are either q/s, cm³/s or mol/s (HT only) •
 - The following factors affect the rate of a reaction.....
 - Temperature
 - Concentration (for solutions)
 - Pressure (for gases) 0
 - Surface area 0
 - Catalyst

Collision Theory

•

- In order for a reaction to occur, particles must collide and collide with enough energy called activation energy.
- Activation energy is the minimum energy needed for a reaction to occur.
- Increasing temperature, increasing concentration/pressure and • increasing the surface area all increase the frequency of collisions.
- Increasing the temperature also gives more particles activation • energy, so more successful collisions.

Temperature

- Increasing the temperature, increases the kinetic energy of the particles.
- Particle move faster.
- This increases the frequency of collisions. ٠
- This increases the rate of reaction. •
- However, same amount of product is made, just faster. •

Increasing temperature also gives more activation energy, so more • collisions are successful.

Concentration/Pressure

- Increasing the concentration, increases the number of particles in a given volume.
- This increases the frequency of collisions. •

Surface Area

Method

Breaking a large solid into smaller pieces, increases the surface area, so more particles exposed.

- This increases the frequency of collisions.
- This increases the rate of reaction.
- However, same amount of product made, just faster.

Measuring Rate of Reaction When a Solid is a Product

 $Na_2S_2O_{3(aq)} + HCI_{(aq)} \rightarrow NaCI_{(aq)} + S_{(s)} + SO_{2(g)} + H_2O_{(l)}$

For the reaction above, sulfur is a solid precipitate, which causes a change in colour.

1. Measure 50cm³ of sodium thiosulphate using a measuring cylinder and put into a conical flask placed on a black cross.

- Measure 10cm³ of hydrochloric acid using a different measuring 2. cylinder (prevent reaction from starting)
- 3. Pour the hydrochloric acid into the conical flask and start timer.
- 4. Stop the timer when the cross is no longer visible.
- 5. Repeat by changing the independent variable.
- 6. Mention 2 control variables (could be volumes of the solutions, concentration of solutions or temperature)

Method

- conical flask.
- 2. Measure 3cm length piece of magnesium ribbon Place the magnesium into the flask, and immediately place bung on top, and start 3.
- timer.
- of gas given off in 30s.
- 5. Repeat by changing the independent variable.
- 6. Mention 2 control variables (could be volumes of the solutions, concentration of solutions, mass of solid or temperature)

Time from start of reaction (minutes

- - For other gases, such as carbon dioxide, can also measure the rate of mass loss using a mass balance.
- 1. Measure 25cm³ of hydrochloric acid using a measuring cylinder and put into a
- 4. Measure the time taken for 20cm3 of gas to be given off or measure the volume