Buttershaw Business and Enterprise College

AQA Combined Science Trilogy Chemistry Paper 1 Key Recall Facts

Atomic Structure and the Periodic Table, Bonding, Structure and Properties of Matter, Quantitative Chemistry, Chemical Changes and Energy Changes

Exam Date – Monday 22nd May

Name.....

Group.....

Teacher.....

Atomic Structure and the Periodic Table

1. N p st	Jame the 3 subatomic particles in the atom and tate their location	 Protons found in the nucleus (centre of atom) Neutrons found in the nucleus (centre of atom) Electrons found on shells/energy levels around the nucleus 				
2. W re P	Vhat is the relative charge, elative mass and symbol for: Proton	2	Particle	Relative charge	Relative mass	Symbol
N	leutron		proton	+1	1	р
	lection		neutron	0	1	n
		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	electron	-1	1/1836 (5.45 x 10-4)	e-
3. W d co	Vhat are the rules for lrawing electronic onfiguration?	1. 2. 3.	Find out the table (numb proton, or a Max of 2 ele Max of 8 ele	e number of e per of electro tomic numb ectrons in firs ectrons in all	electrons from ons is the same er) st shell other shells	n periodic e as the
4. W	Vhat is the radius of an tom?	0.1nm (10 ⁻¹⁰ m)				
5. Si a'	ize of the nucleus of an tom?	(10 ⁻¹⁴ m)				
6. W	Vhy do atoms have no overall charge?	Equal number of positive protons and negative electrons.				
7. H ic	low does an atom form an on?	The atom has gained or lost electrons to form a full, stable outer shell. If the atom loses electrons, it will become a positive ion and if it gains electrons, it will become a negative ion.				
8. W	Vhat is an element?	Ar	n element on	ly contains o	ne type of ato	m.
9. W	Vhat is a compound?	A compound contains 2 or more elements chemically combined together.				
10.W	Vhat is a mixture?	2 or more substances (elements or compounds) not chemically combined together.				

11. How do we separate	Filtration (separates an insoluble solid from a
mixtures?	mixture with a liquid)
	Evaporation/crystallisation (soluble solid from a
	solution)
	 Distillation (2 solvents)
	 chromatography (coloured compounds/dyes).
12.Name the Scientists in order	 Dalton 1803 – Theory that all substances made of
of the discoveries made for	atoms and atoms are indivisible (spherical model)
the history of the atom.	 JJ Thompson 1897 – Plum pudding model after
What did they discover?	discovering the electron.
	• Rutherford 1907 – Alpha scattering experiment that
	disproved the plum pudding model.
	Neils Bohr 1913 – Idea of electrons in energy levels
	around nucleus. Bohr model.
	Chadwick 1932 – Discovered the neutron
13.Compare the plum pudding	In the plum pudding model, the protons are not
and the Bohr model	MUEREAS
	Nuclear model the protons are in the pucleus
	Nuclear model the protons are in the nucleus.
	Plum pudding electrons are embedded in the ball of
	positive charge.
	WHEREAS
	Nuclear model the electrons are in shells or energy
	levels.
14.What is mass number?	Number of protons + number of neutrons
15.What is atomic number?	Number of protons
16.How would you work out the	Look at the atomic number (this is similar for all atoms
number of protons or	of a particular element)
electrons of an atom?	
17.How would you work out the	Mass number – atomic number
number of neutrons of an	
atom?	
18.What is an isotope?	An isotope is an atom of the same element with the
	same number of protons but different number of
10 What is a group on the	neutrons.
19. What is a group on the	column containing elements with the same number of
	The group number talls you the number of electrons in
	1 The officing number following the number of discrimination 1
	the outer shell.
20.What is a period on the	the outer shell. A row with the period number being the number of
20.What is a period on the periodic table?	A row with the period number being the number of electrons in electron shells.

21.Why is it called a periodic table?	Similar properties occur at regular (periodic) intervals.	
22.How are the elements in the modern periodic table arranged?	By atomic number.	
23.How were the elements in the Early Periodic tables arranged?	By atomic weight (protons were not discovered at the time)	
24.Why was Newlands' Periodic table not accepted?	He ended up putting elements in groups that did not have similar properties e.g., iron oxygen and sulfur.	
25.Describe 3 things that Mendeleev did to allow his periodic table to be accepted	 He left gaps for undiscovered elements. He predicted properties of these elements and when they were discovered, his predictions were correct. He switched some elements around (I and Te) to make sure they were in groups with elements that had similar properties. 	
26.Where are metals and non- metals located on the periodic table?	Metals are found on the left-hand side and the centre. Non-metals found on the right-hand side.	
27.Why do metals form positive ions and non-metals negative ions?	Metals have less than 4 electrons in the outer shell, so less energy needed to lose electrons, so form positive ions. Non-metals have more than 4 electrons in the outer shell, so less energy to gain electrons, so form negative ions.	
28.Give properties of metals	 High melting point Good conductors of heat and electricity Malleable Generally, have high density. Sonorous (make ringing sound when hit) Ductile (can be stretched into wires) 	
29. Give properties of non- metals	 Generally low melting points Poor conductors of heat and electricity Brittle Generally, have low density 	
30.What is the other name for group 0 elements?	Noble gases	
31.Why are group 0 elements unreactive?	They have a full outer shell, so do not need to gain, or lose electrons.	
32.What is the other name for group 1 elements?	Alkali metals	

33.Describe the properties of	Reactive
Group 1 Alkali metals.	Silvery solids
	 Form white compounds (e.g., sodium chloride)
	Shiny when cut.
	 Can be cut with a knife – soft.
	 Solid metals at RT – melting point decreases down
	group.
	• Tarnish (turn dull) when react with O ₂ , therefore
	stored in oil.
	 Form +1 ions – lose one electron to form full outer
	shell (more stable).
34.Why does reactivity increase	 Going down group, there are more shells.
down Group 1 (the alkali	 Distance between nucleus and outer electron is
metals)?	bigger.
	 Weaker attraction between nucleus and outer
	electron.
	 Less energy needed to lose electron.
	Reactivity increases.
35.What products are made	Metal + water \rightarrow Metal hydroxide + hydrogen
when a metal reacts with	
water?	Hydrogen gas is explosive.
36. What is the other name for	Halogens
group 7 elements?	
37.Why are chlorine, bromine,	They have similar properties and have the same
and iodine in the same	number of electrons in the outer shell.
group?	
38.Describe properties of the	Non-metals
halogens (Group 7).	 Diatomic (2 atoms that are covalently bonded
	together) e.g., F ₂ , Cl ₂ , Br ₂ , I ₂ , At ₂
	• Form -1 ions – gain one electron to have full outer
	shell (stable)
39. Why does reactivity decrease	• Going down group, there are more shells.
down Group 7?	 Distance between nucleus and incoming electron is
	bigger.
	 Weaker attraction between nucleus and incoming
	electron.
	 Iviore energy needed to gain electron.
40 Decembra the reverse the of	Keactivity decreases. Chloring rade valley and at DT (result to rest.)
40. Describe the properties of	Chiorine – pale yellow gas at KT (room temperature)
cniorine, promine, and	Bromine – deep red liquid at KT but red-brown gas
ioaine.	Iodine – grey solid at KT but purple gas

Bonding, Structure and Properties of Matter

1. What is ionic bonding?	 Occurs between positive metal ion and negative non-metal ions. Involves the transfer of electrons from the metal to the non-metal. 		
2. What is covalent bonding?	 Occurs between non-metal atoms. Involves the sharing pairs of electrons held in place by strong attractions to the nucleus of atoms. 		
3. Why do atoms transfer or share electrons to form chemical bonds?	To gain a full outer shell of electrons, which is more stable.		
 Draw and explain the ionic dot and cross diagram for potassium fluoride. 	Image: Construction of the second s		
5. Draw and explain the ionic dot and cross for sodium oxide	Two sodium atoms lose one electron each to form a +1 ion with a full outer shell. One oxygen atom gains both electrons to form a -2 ion with a full outer shell.		
6. Describe the structure of an ionic compound.	A giant lattice with strong electrostatic forces of attraction between positive metal ions and negative non-metal ions. $ \underbrace{\mathbf{Key}}_{\mathbf{Na}^+} \underbrace{\mathbf{Key}}_{\mathbf{CI}^-} \underbrace{\mathbf{Key}}_{\mathbf{U} \mathbf{U}^+} \underbrace{\mathbf{Key}}_{\mathbf{U} \mathbf{U} \mathbf{U}^+} \underbrace{\mathbf{Key}}_{\mathbf{U} \mathbf{U} \mathbf{U}^+} \underbrace{\mathbf{Key}}_{\mathbf{U} \mathbf{U} \mathbf{U}^+} \underbrace{\mathbf{Key}}_{\mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}^+} \underbrace{\mathbf{Key}}_{\mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$		

7. Why do ionic compounds	Giant lattice
have high melting points?	Strong electrostatic forces of attraction between
	oppositely charged ions.
	 Lots of energy needed to break forces.
8. Why do ionic compounds not	Ions are fixed and cannot move.
conduct electricity when	
solid?	
9. Why do ionic compounds	Ionic bonds have broken, so ions are now free to move
conduct electricity when	and carry charge through the liquid/solution.
molten or dissolved in water?	
10.Why do simple covalent	Small molecules
molecules have low melting	Weak intermolecular forces
and boiling points?	Little energy needed to break forces
11.Why do simple covalent	Molecules do not have an electrical charge (no
molecules not conduct	delocalised electrons or ions)
electricity?	
12.Compare the strength of	Covalent bonds are very strong but intermolecular
intermolecular forces and	forces are weak.
covalent bonds.	
13. What are polymers?	Polymers are large molecules of monomers (small
	reaction
14 Why do polymors have high	• The stome are linked together by strong covalent
melting points?	• The atoms are linked together by strong covalent
	 Long molecule, so strong intermolecular forces
	 Long molecule, so strong intermolecular forces Lots of energy needed to break forces
15 Draw a diagram to show the	
representation of a polymer	
(polyethene)	+c-c+
(peryearce)	∖⊢ ⊢/n
	poly(ethene)
16. Give 3 examples of giant	Diamond, graphite and silica (silicon dioxide)
covalent structures.	
17.Which element makes up	Carbon
graphite and diamond?	
18.Why do giant covalent	Giant lattice
substances have high melting	Lots of strong covalent bonds
points?	Lots of energy needed to break bonds
19.Explain why diamond is hard	Each carbon atom in diamond is connected to 4 other
	carbon atoms by interconnecting covalent bonds.
	Therefore, it has no layers which can slide over each
	other.

20.Explain why graphite is soft	Each carbon atom in graphite is connected to 3 other carbon atoms in layers of beyagonal rings. These layers
	can slide over each other as there are no covalent
	bonds between the layer just weak intermolecular
	forces.
21 Explain why graphite	Graphite has delocalised electrons that can move and
conducts electricity but not	carry charge through the whole structure
diamond	Diamond has no delocalised electrons
22 What is granhene? Give uses	Granhene is a single layer of granhite, which is used in
of granhene	electronics and composites
23 Give 3 properties of	 High melting point (same as diamond and graphite)
granhene	 Conducts electricity (same as graphite)
Brablierie	 Conducts electricity (same as graphite) Transparent (and layer thick)
	 Transparent (one layer thick) Elswible (strong sevelent bends)
	• Flexible (strong covalent bonds)
24.Describe the structure of	Allotrope of carbon with a hollow shape. The shape is
fullerenes.	based on hexagonal rings but can also contains rings of
	5 or 7 carbon atoms.
25.What was the first fullerene	Buckminsterfullerene (C ₆₀) which had a spherical
discovered?	structure
26.State one property of	Fullerenes have a large surface area.
fullerenes and suggest 2 uses	 They are useful as catalysts.
of fullerenes.	• They can be used as lubricants.
27.Describe the structure of	Cylindrical fullerenes called 'buckytubes'
carbon nanotubes.	 They have a very high length:diameter ratio
	 Tubes of graphene like sheets
28.What are the properties of	High tensile strength
carbon nanotubes?	Conducts electricity (and heat)
29.Give 3 uses of carbon	 Nanotechnology
nanotubes	Electronics
	 Materials (tennis rackets)
30.What is metallic bonding?	Where positive metals ions are closely packed together
	with delocalised electrons flowing around them.
31.Why do metals conduct	Metals have delocalised electrons that can move and
electricity?	carry charge through the whole structure.
32.Why do metals conduct	Delocalised electrons are free to move and transfer
heat?	thermal energy.
33.Why do metals have high	Giant lattices
melting points?	Strong electrostatic forces between positive metal
	ions and elocalised electrons
	 Lots of energy needed to break forces

34.Why are pure metals	All atoms have the	e same size.	
malleable (soft)?	Atoms are in layers.		
	Atoms can slide o	ver each other.	
35.Why are alloys harder than	Alloys contain ato	oms of different siz	es.
pure metals?	These different size	zes distort the laye	ered structure of
	the atoms in the a	alloy.	
	Atoms cannot slid	le over each other.	
36.Give the 4 state symbols	(s) solid		
	(l) liquid		
	(g) gas		
	(aq) aqueous (diss	solved in water)	
37.Draw the particle model for solids, liquids, and gases			
	Solid	Liquid	Gas
38.Name the changes of state	Melting – solid \rightarrow liquid Freezing – liquid \rightarrow solid Boiling – liquid \rightarrow gas Condensation – gas \rightarrow liquid Sublimation – solid \rightarrow gas		

Quantitative Chemistry

1. What is the Mr of water	$H - 2 \times 1 = 2$
(H ₂ O)?	$0 - 1 \times 16 = 16$
Ar - H = 1, 0 = 16	Mr = 2 + 16 = 18
2. What is the Mr of $KMnO_4$?	$K - 1 \times 39 = 39$
Ar – K = 38, O = 16, Mn = 55	$Mn - 1 \times 55 = 55$
	$O - 4 \times 16 = 64$
	M <i>r</i> = 39 + 55 + 64 = 158
3. What is the Mr of $AI_2(CO_3)_3$?	$AI - 2 \times 27 = 54$
A <i>r</i> – K = 38, O = 16, Mn = 55	$C - 3 \times 12 = 36$
	$O - 9 \times 16 = 144$
	Mr = 54 + 36 + 144 = 234
4. Calculate the percentage by	$Fe - 2 \times 56 = 112$
mass of iron in iron oxide	$O - 3 \times 16 = 48$
(Fe ₂ O ₃)	Mr = 112 + 48 = 160
A _r – Fe = 56, O = 16	% by mass of iron = (112/160) x 100 = 70%
5. What is the theory of the	The law of conservation of mass states that no atoms
conservation of mass?	are lost or made during a chemical reaction, so the
	mass of the products equals the mass of the reactants.
6. If there is a gaseous reactant.	Mass of reactant is not measured.
why does the mass appear to	Gas comes in from the atmosphere.
have changed?	Increases the mass.
7. If there is a gaseous product.	Products escapes into the atmosphere.
why does the mass appear to	Decreases the mass.
have changed?	
8. How do you calculate a mean	To work out the MEAN average:
of a set of values?	1. Add all of your values for the results of the
	experiment together (excluding anomalous results
	if there are any)
	2. Divide by the number of results you have.
9. How do you calculate the	The range is the difference between the highest and
range of a set of values?	lowest values.
10. How do you calculate the	Range ÷ 2
uncertainty of results from	Uncertainty = Mean + (Range/2)
vour experiment?	
11.Write the concentration	
equation triangle	
	Mass
	(g)
	concentration volume
	(g/dm ³) (dm ³)
	()

Chemical Changes

1.	Write the equations for the	Sodium + oxygen → sodium oxide
	following metals reacting	Magnesium + oxygen → magnesium oxide
	with oxygen; sodium,	
	magnesium	
2.	Write the equations for the	Sodium + water → sodium hydroxide + hydrogen
	following metals reacting	Magnesium + water $ ightarrow$ magnesium hydroxide + hydrogen
	with water; sodium,	
	magnesium	
3.	What are oxidation and	Oxidation is the gain of oxygen.
	reduction, in terms of	Reduction is the loss of oxygen from a compound.
	oxygen?	
4.	What charge do metal ions	Positive, because they lose electrons in chemical
	have?	reactions form a full outer shell.
5.	What is displacement?	Displacement is where a more reactive metal takes the
		place of a less reactive metal in a compound, for
		example:
		aluminium + iron oxide $ ightarrow$ aluminium oxide + iron.
6.	Which metals can be	Unreactive metals, such as gold, silver, and platinum.
	naturally found in the Earth	
	as pure metals?	
7.	Which metals are extracted	Zinc, iron, and copper can be extracted using reduction
	from their oxides by	with carbon because carbon is more reactive than
	reduction with carbon? Why?	these metals.
8.	Which ions are formed in	Acids: H ⁺
	aqueous solutions of acids	Alkalis: OH-
	and alkalis?	
9.	What colour ranges would	Red-yellow = acidic
	indicate an acidic, neutral, or	Green = neutral
	alkaline solution using	Blue-purple = alkaline
	universal indicator?	
10	What pH are acidic, neutral,	pH below 7 = acidic
	and alkaline solutions?	pH 7 = neutral
		pH above 7 = alkaline
11	State the ionic equation for	$H^+(aq) + OH^-(aq) \longrightarrow H_2O(I)$
	neutralisation.	where (aq) is aqueous and (I) is liquid
12	Write an equation for the	a) Calcium oxide + nitric acid \rightarrow calcium nitrate +
-	following reactions.	water
a)	Calcium oxide and nitric acid	b) Zinc hydroxide + hydrochloric acid \rightarrow zinc chloride +
b)	Zinc hydroxide and	water
	hydrochloric acid	c) Iron carbonate + sulfuric acid \rightarrow iron sulfate +
c)	Iron carbonate and sulfuric	carbon dioxide + water
	acid	

Energy Changes

1.	Why does the total amount of energy in a reaction never change?	Energy is NEVER created or destroyed. Therefore, the total amount of energy at the end of a reaction must have been the same as the start.
2.	What is an exothermic reaction in terms of temperature and energy change?	Temperature increases and energy is released into the surroundings. Products have less energy than reactants.
3.	What is an endothermic reaction in terms of temperature and energy change? Draw and label exothermic and endothermic energy diagrams.	Temperature decreases and heat energy is taken in from the surroundings. Products have more energy than surroundings Activation Reactants Reaction Progress Exothermic reaction
5.	What is the collision theory?	Collision theory states that a reaction only occurs if particles collide with enough energy (activation energy).
6.	What is activation energy?	Activation energy is the minimum energy needed for particles to react when they collide.
7.	Give 3 examples of exothermic reactions.	Neutralisation, combustion, Self-heating cans
8.	Give 2 examples of an endothermic reaction.	Thermal decomposition reactions, reaction of citric acid with sodium hydrogencarbonate