Buttershaw Business and Enterprise College

AQA Combined Science Trilogy

Chemistry Paper 2 Higher

Key Recall Facts

Rate and Extent of Chemical Change, Organic Chemistry, Chemical Analysis, Chemistry of the Atmosphere, Using Resources

Exam Date – Tuesday 13th June

Name.....

Group.....

Teacher.....

Rate and Extent of Chemical Change Recall Facts

1. Equation for rate of reaction	Amount of product formed/time taken		
	Or Amount of reactant used/time taken		
2 What are the units form t			
2. What are the units for rate			
reaction?	HT only mol/s		
3. How can you measure rate reaction?	of 1. By measuring the volume of gas produced		
	in a certain time, using a		
	gas syringe		
	2. By measuring the change in		
	mass, using a mass balance		
	if one of the products is a rew from the top		
	gas /\ 🔊 🦳		
	3. By measuring how long it		
	takes for a cross to disappear		
4. How to calculate rate of	• Draw a tangent to the curve at the time mentioned		
reaction at one point in tim	-		
tangent at t,	 Use the gradient of the tangent to calculate rate of 		
Δ(Product)	reaction using		
Δ(Time)	 Change in y (product)/change in x (time) 		
5. What is collision theory?	In order to react, particles <u>must collide and must</u>		
	<u>collide with enough activation energy</u> .		
	If they collide but not with enough energy, they do not		
	react		
6. What is activation energy?	Minimum energy needed for a reaction to occur		
7. List 5 factors that affect the			
rate of reaction	Concentration		
	Surface area		
	Catalyst		
	Pressure		
8. How does increasing	Increasing concentration, increases number of		
concentration/pressure	particles in a given volume. This increases the		
affect the rate of reaction?	frequency of collisions and increases the rate of		
	reaction.		
9. How does increasing	As the temperature is increased, particles have more		
temperature affect the rate of reaction?			
	frequency of collisions, increasing the rate of reaction.		
	Increasing the temperature also gives more particles activation energy, leading to more successful collisions		
	activation energy, leading to more successful conisions		

10.How does increasing the surface area affect the rate of reaction?	Breaking a solid down into smaller pieces, increases the surface area and number of particles exposed. This increases the frequency of collisions, increasing the rate of reaction.	
11.How does having a catalyst increase the rate of reaction?	A catalyst provides an alternative route with a lower activation energy. More particles have activation leading to more successful collisions, increasing the rate of reaction	
	Energy Reactants	
12.What are enzymes?	Biological catalysts that speed up reactions inside the body	
13.What does the symbol ≓ represent?	Reversible reaction	
14.What is Le Chateliers' principle?	If equilibrium conditions change, then the equilibrium will shift to oppose the change.	
15.What is a closed system?	No reactants and/or products can escape	
16.What is a dynamic	In a closed system, the forward and backward reaction	
equilibrium?	occur at the same rate. This means that the	
	concentration of reactants and products will not change	
17.What happens to the	Equilibrium will shift to the right to oppose this	
equilibria if we increase one of the reactants?	change. So, more products formed	
18.What happens to the equilibria if we increase the temperature?	Equilibrium will shift to the endothermic side	
19.What happens to the equilibria if you increase the pressure?	Equilibrium will shift to the side with fewer moles	
20.How does a catalyst affect equilibria?	A catalyst has no effect on the position of the equilibria However, it allows equilibria to be reached faster, as it speeds up the rate of both forward and backward reactions by the same amount.	

Organic Chemistry

1	Describe how crude oil is	Dead plankton		
	formed	 Buried in mud 		
		 Over millions of years 		
2.	What is a hydrocarbon?	Compound made of only carbon and hydrogen atoms		
3.	What is a homologous series?	Group of organic compounds that react in a similar way		
4.	Describe the difference between saturated and unsaturated hydrocarbons	Saturated hydrocarbons have single C-C bonds, whilst unsaturated hydrocarbons have double C=C bonds		
5.	What is a fraction?	A mixture of hydrocarbons with similar number of carbon atoms and boiling points		
6.	Describe how fractional	Heated crude oil and turned into vapour.		
	distillation separates the	Enters a column where it is hotter at bottom and		
	different fractions in crude oil	cooler at top.		
		Cools and condenses.		
		 At different levels based on boiling point 		
7.	Name 4 fractions in crude oil	Refinery Gases – heating and cooking		
	and their uses	Gasoline (petrol) – fuel for cars		
		Kerosene – fuel for planes		
		Diesel – fuel for lorries		
		 Heavy fuel oil – fuel for ships 		
		Bitumen – road tarmac		
8.	Describe and explain the trend between the length of hydrocarbon and boiling point	 As the number of carbon atoms increase, the high the boiling point. This is because there are stronger intermolecular forces. So, more energy needed to break forces. 		
9.	Describe the trend between length of hydrocarbon and flammability	As the number of carbon atoms increase, the lower the flammability		

10.Describe the trend between length of hydrocarbon and viscosity	As the number of carbon atoms increase, the higher the viscosity.
11.Describe the difference between complete combustion and incomplete combustion	Complete – fuel burnt in lots of oxygen. Incomplete – fuel burnt in little oxygen.
12.What are the products of complete combustion of a hydrocarbon? Write a word equation for the complete combustion of propane	Carbon dioxide and water Propane + oxygen → carbon dioxide + water
13.What are the products of incomplete combustion of a hydrocarbon? Write the word equation for the incomplete combustion of propane	Carbon monoxide or carbon particulates and water Propane + oxygen → carbon monoxide + water
 14.Balance the symbol equation below. Is this showing complete combustion or incomplete combustion? Explain your answer _C₃H₈ + _O₂ → _CO₂ + _H₂O 	$_C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ Complete combustion as it produces carbon dioxide
15.Give the general formula of alkanes	C _n H _{2n+2}
16.What is the formula of an alkane with 6 carbon atoms?	C ₆ H ₁₄
17.Name the first 4 alkanes,	Number of Carbon Atoms Name of Alkane Displayed Formula Molecular formula
draw their displayed formula and write their molecular formula	1 Methane $H - \dot{C} - H$ CH_4
	2 Ethane $H = H$ C_2H_6
	3 Propane $H_1 H_2 H_3 H_4 H_4 H_4 H_4 H_4 H_4 H_4 H_4 H_4 H_4$
	4 Butane $H H H H$ $H - C - C - C - H C_4 H_{10}$ H H H H
18.Why are alkanes known as saturated hydrocarbon?	Saturated – contains only single C-C bonds. Hydrocarbon – contains only hydrogen and carbon atoms.

19.What is cracking?	Breaking a large hydrocarbon (alkane) into a shorter chain hydrocarbon and an alkene
20.Why is cracking important?	To turn excess longer chains into more desirable shorter alkanes (1) to be used as fuels (1) and alkenes to make polymers/plastics (1)
21.State the two types of cracking and their conditions	Catalytic – use of a catalyst and lower temperatures Steam – mix them with steam at very high temperatures and high pressures
22.Describe an advantage of catalytic cracking	Catalytic cracking is cheaper and more efficient than thermal cracking as it uses a lower temperature and pressure.
23.How are alkenes different from alkanes?	Have at least one double C=C bond
24. Give the use for alkenes	Used to make polymers/plastics, as well as starting material for other chemicals
25.Describe the test for alkenes	Add bromine water Turns orange to colourless

Chemical Analysis

 In terms of everyday language, what is a pure substance? 	A natural substance that has nothing added to it. For example, pure milk			
2. What is a pure substance?	A pure substance is a single element or compound. It has a specific melting and boiling point.			
3. How can we test the purity of a substance?	Heat it and check melting point (melting point should be fixed and can be checked against textbook)			ю
4. What is a formulation?	Mixture designed a	as a useful produc	t.	
 Give an example of a formulation and why it is used as a formulation 	Calpol – flavours a	dded as a sweeter	ner.	
6. Define the term element	Substance that cor periodic table.	ntains only one typ	be of atom on the	
7. Define the term compound	Substance that cor chemically joined t Written as two wo fluoride, nitrogen o	ogether. rds/elements toge		
8. Define the term mixture	Two or more subst joined together e.٤		not chemically	
 9. Sort the following substances out into elements, compounds and mixtures: - Salt water, Sodium, magnesium oxide, air, carbon dioxide, sodium chloride, oxygen, sulfur dioxide, copper, iron and sulfur, iron sulfide, argon. 	Element Sodium Oxygen Copper Argon	Compound Magnesium oxide Carbon dioxide Sodium chloride Sulfur dioxide Iron sulfide	Mixture Salt water Air Iron and sulfur	
10.How is the melting point of a pure substance different from an impure substance?	An impure substance has a lower melting point And has a range of melting points			
11.Why is the start line in chromatography drawn in pencil?	Pencil is insoluble so does not run up the paper.			
12.Why does the start line have to be above the solvent in chromatography?	So, the substance being tested does not dissolve into the solvent.			

 13.If the dot on the pencil line does not move, how could the experiment be changed to separate the solids in the solvent? 14.What would happen to the Rf value if the solvent is changed? 	Use a different solvent in which the solutes do dissolve It would change depending on the solubility/attraction to the mobile phase
15.What is the equation for Rf value?	R _f = Distance traveled by solute Distance traveled by solvent
16.What is meant by soluble?	Dissolves in a solvent.
17.What is the stationary phase in chromatography? Explain your answer	Chromatography paper as it does not move
18.What is the mobile phase in chromatography? Explain your answer	Solvent as it moves
19.Explain how chromatography separates different substances (dyes) dissolved in the same solvent	Different substances have different solubilities As the have different forces of attraction to the mobile phase and so move at different speeds up the paper
20.Explain how you could find out the name of an unknown chemical using chromatography	Run the substances up the chromatography paper and calculate Rf value Compare Rf value With the Rf value of known substances
 21.Use the diagram below to answer the questions below. Solvent front Solvent front Chromatography B c x B c x B c x Chromatography Start line A B c x B c x Chromatography Start line A B c x Chromatography Solve 1 (Start line) Start line Chromatography Solve 2 more conclusions about dye X 	 a) Only one dot/spot b) More than one dot in the same vertical column c) Contains dyes B and C Does not contain dye A Contains an unknown dye.

22.Describe the test for hydrogen	Lighted splintSqueaky pop
23.Describe the test for oxygen	Glowing splintRelights
24.Describe the test for carbon dioxide	 Bubble gas through limewater Turns cloudy.
25.Describe the test for chlorine	 Place damp litmus paper in gas Bleaches (turns white)

Chemistry of the Atmosphere

1	Name the 4 gases in the	• Nitrogon 78%
<u> </u>	atmosphere today including	 Nitrogen – 78% Oxygen – 21%
	their percentages	
		Carbon dioxide – 0.04%
		 Argon and other gases – 1%
2.	How does carbon get trapped	• Trees take in carbon dioxide for photosynthesis.
	inside coal?	• Trees die.
		Get trapped in mud.
		Over millions of years.
3.	Why was the early	Due to intense volcanic activity
	atmosphere predominantly	
	made from carbon dioxide	
4	and water vapour?	Tomporatura an Farth appled
4.	What led to the formation of the oceans and seas?	Temperature on Earth cooled, Water vaneur seeled and condensed to form
	the oceans and seas!	Water vapour cooled and condensed to form
		oceans and seas.
5.	Describe 2 ways by which the	Plants/algae photosynthesise.
	amount of carbon dioxide on	Dissolved in oceans.
	Earth decreased from Early	 Trapped/locked inside sedimentary
	Earth	rocks/carbonates.
6.	Why did the amount of	Plants/algae photosynthesise.
	oxygen increase?	
7.	Why did the amount of	Nitrogen unreactive so builds up.
	nitrogen increase?	 Ammonia (NH₃) oxidised to nitrogen.
8.	Name the 3 greenhouse	Carbon dioxide
	gases	Methane
		Water vapour
9.	Describe the greenhouse	 Short wavelength radiation from the Sun goes
	effect	through atmosphere.
		 Absorbed by Earth's surface and re-emitted.
		 At a longer wavelength.
		 Longer wavelength is absorbed by greenhouse
		gases causing Earth to warm up.
10	What is the same factorist?	
10	What is the carbon footprint?	The total amount of carbon dioxide emitted by a product/service during its life cycle
		product/service during its life cycle.

11.How has the composition of the atmosphere changed over the last 200 years?	Amount of carbon dioxide has increased
12.List some ways to help reduce carbon footprint	 Alternative energy resources Energy conservation e.g. less heat loss from homes Carbon capture/storage Carbon-neutral fuels Carbon tax/licenses on use of fossil fuels Cut waste
13.List some problems with reducing carbon footprint	 Lack of technology on reliable alternatives Scientific Disagreement Economic considerations Countries not cooperating Hesitant to change lifestyle Lack of public knowledge/education
14.Why have the levels of methane increased?	 Agriculture – more farm animals producing methane through digestion Decomposition of waste in agriculture/landfill sites
15.Describe 4 negative impacts of climate change	 Melting ice caps Sea levels rising Destruction of habitats leading to extinction Droughts and desertification Spread of diseases like malaria Change in migration patterns of species e.g., birds migrating
16.Describe how carbon dioxide is formed	Complete combustion of fuels using lots of oxygen
17.What are the effects of an increase in carbon dioxide?	Global warming
18.Describe how carbon monoxide and carbon particulates are formed	Incomplete combustion of fuels using little oxygen
19.What is the effect of carbon monoxide?	Colourless, odourless and poisonous gas that stops red blood cells carrying oxygen
20.What is caused by carbon particulates (soot)?	 Asthma Global dimming/smog Dirties buildings
21.Describe how sulfur dioxide is formed	Sulfur in the fuel reacts with oxygen at high temperatures

22.What are the effects of increased sulfur dioxide in the air?	 Acid rain Reacts with old buildings made from limestone. Kills aquatic life.
23.Describe how oxides of nitrogen are formed	Nitrogen in the air reacts with oxygen at high temperatures
24.What are the effects of increased oxides of nitrogen in the air?	Acid rainAsthma
25.Describe the effect a catalytic converter in a car has on air pollutants	 Turns more harmful gases (nitrogen oxides and carbon monoxide) to less harmful gases (nitrogen and carbon dioxide)

Using Resources

	·
1. What do we use the Earth's	a. Warmth
natural resources for?	b. Shelter
	c. Food
	d. Transport
2. Why do we adapt and	To make synthetic resources that have improved
improve some of the Earth's	properties.
natural resources?	For example, rubber from tree sap is vulcanised to
	form car tyres
3. What is a renewable	Renewable resources can be reformed faster, or at the
resource?	same rate, that we use them.
4. Example of a renewable	Timber and food
resource	
5. What is a finite resource	Cannot be formed quickly enough to replace them at
	the rate they are being used
6. What is sustainability?	Using resources to meet the demands of today without
	affecting the needs of people in the future.
7. How do we reduce the use of	Re-use and recycle
resources?	
8. How are metals/glass and	Separated using an appropriate method (magnets
plastic recycled?	for metals, colours for glass)
	Melted
	 Recast/reformed/remoulded into new product
9. What is the LCA? Life cycle	Looks at every stage of the product's life to assess the
assessment	impact it has on the environment
10.What 4 things does the LCA	Getting the raw materials and processing them
consider?	Energy used in extraction? Energy used in processing?
	Manufacture and packaging
	Energy required, pollution, how are waste products
	disposed of?
	Using the product
	Lifespan of product, does the product damage the
	environment
	Disposal of a product
11.How can we dispose of a	 Landfill - takes up space, maybe non-biodegradable
product?	(does not break down naturally)
	 Energy transporting waste
	 Incinerating product – some energy can be
	obtained from this, but could release harmful
	chemicals as pollution

12.What are the disadvantages of LCA?	Some companies may only use certain parts of the LCA, leading to bias and positive advertising Some impacts on the environment are difficult to quantify
13.What is potable water?	This is water that is safe to drink – not pure as it will contain dissolved substances
14.State the properties of potable water	 Very little to no microbes Little dissolved salts pH between 6.5 and 8.5
 15.How is potable water obtained in the UK? 16.Describe how potable water is obtained from freshwater 	 From freshwater and groundwater (lakes, rivers and underground streams) Filtration - This water is passed through filter beds wire mesh to remove large objects, such as
and groundwater	 twigs and rock ii. sand and gravel filter beds removes more fine solid particles Then, sterilised with chlorine, ozone or UV to kill microbes
17.Define the term sterilise	Kills pathogens
18.What is desalination?	Removing high levels of salt from sea water to obtain potable water. Used in countries where there is little freshwater and groundwater
19.State the 2 methods of desalination	Reverse osmosis and distillation
20.How is potable water obtained by distillation?	Distil the sea water, water evaporates first, condense back to pure water and leave salts behing in the flask
21.How is potable water obtained by reverse osmosis?	Pressure used to pass salty water through a partially permeable membrane. Water small enough to pass through, but salt left behind.
22.How would you test pure water?	Boiling point should be 100°C Anhydrous copper sulfate \rightarrow goes from white to blue
23.Describe disadvantages of distillation and reverse osmosis	 Large amount of energy, and so are expensive for producing huge quantities of potable water. Use of energy may release carbon dioxide contributing to global warming Countries that are poor and lack of fresh water can't afford it.

24.Where does wastewater come from?	 Industry – industrial wastewater contains harmful chemicals Toilet water (sewage) – human waste, sinks, baths and showers contain organic matter and harmful chemicals Agricultural wastewater – contains organic matter and harmful chemicals
25.How to treat wastewater?	Screening and grit removal - removes large solids from wastewater Sedimentation – removes human waste from rest of water (effluent). Heavier sludge sinks to the bottom, and effluent floats at the top Aerobic treatment of effluent – good bacteria kill bad bacteria (break down organic matter) in the presence of oxygen Anaerobic treatment of sludge (waste from sedimentation) – bacteria produce methane from sludge
26.State 2 alternative methods of extracting metals from low percentage ores	PhytominingBioleaching
27.Describe how copper can be extracted by phytomining	 Plants grown in soil containing copper compounds Plants absorb copper compounds when they grow Harvest and burn them into ash React with sulfuric acid to form copper sulfate solution Electrolysis of solution to form copper or displacement reaction with scrap iron
28.Describe how copper can be extracted by bioleaching	 Bacteria are used that produce leachate solutions that contain metal compounds Electrolysis of solution to form copper or displacement reaction with scrap iron
29.Why is displacement preferred to electrolysis?	Cheaper due to greater energy requirement of electrolysis
30.Why are these methods used for low metal ores over traditional methods of carbon extraction and electrolysis?	These methods are more cost effective and may have less impact on the environment. However, they are much slower